PHYSICAL REVIEW E 66, 016108 (2002
Design degrees of freedom and mechanisms for complexity
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We develop a discrete spectrum of percolation forest fire models characterized by incoessgmdegrees
of freedom(DDOF’s). The DDOF's are tuned to optimize the yield of trees after a single spark. In the limit of
a single DDOF, the model is tuned to the critical density. Additional DDOF’s allow for increasingly refined
spatial patterns, associated with the cellular structures seen in highly optimized tolgt&@0e The spectrum
of models provides a clear illustration of the contrast between criticality and HOT, as well as a concrete
guantitative example of how a sequence of robustness tradeoffs naturally arises when increasingly complex
systems are developed through additional layers of design. Such tradeoffs are familiar in engineering and
biology and are a central aspect of the complex systems that can be characterized as HOT.
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[. INTRODUCTION cal phase transitions. “Self-organized” describes systems
that are dynamically attracted to such transition states.

Complexity and design are common concepts that de- In the alternative point of view, complexity is associated
scribe many aspects of our everyday experiences, yet bothith intricately designed or highly evolved systems. This
concepts have generated much controversy in the scientifitotion of complexity is familiar in biology and engineering,
literature. Design is typically associated with a planned orand plays an important role in the extensive literature devel-
deliberate selection based on performance goals, as in highped in the artificial life(ALife) community. ALife studies
technology and engineerifd]. However, design also plays how increasingly complex computer organisms evolve
an important role in management and policy for both sociathrough competitiod8]. More recently, a theoretical frame-
and natural systems. Evolution by natural selection can bwork referred to as highly optimized toleran@dOT) was
thought of as nature’s mechanism for design, whereby highintroduced[9—-11], which emphasizes the role of robustness
fitness organisms are selected over poor performers, withotid uncertainties in the environment as a driving force towards
requiring the intervention of a deliberate desigf®r While  increasing complexity in biological evolution and engineer-
it is widely recognized that chance, evolution, and design allng design. It is the HOT framework on which this paper is
play roles in complex technological, social, and biologicalbased.
systems, their relative roles remain controversial. Even for The suggestion that robust design is the primary mecha-
engineering systems, where design is deliberate and perfonism for complexity is motivated by the observation that for
mance goals are relatively straightforward to quantify, it ismost biological and technological systems, the vast majority
difficult to assess the extent to which designs are close tof components are present for robustness rather than for ba-
optimal, since even the simplest mathematical descriptionsic functionality of the organism or machifi#2]. Designed
are often computationally intractable. A further challenge issystems are typically internally extremely heterogeneous and
to describe the role and extent of design in a way that is cleacomplex, and this complexity is introduced to create simple,
and systematic, yet does not rely on detailed knowledge afeliable, robust external behavior, despite uncertainty in com-
the design process. ponent parts and in the environment. In designed systems,

The relationship between design and complexity has simiinternal complexity is used to minimize external complexity.
lar ambiguities and controversies. One popular notion ofThis deviates from emergent complexity, which emphasizes
complexity involves systems that exhibit variable featureshow internally simple systems can yield externally complex
spanning a range of scales in time and space. Broadly speakehavior. Nonetheless, due to the broad spectrum of environ-
ing, there have been two extreme theoretical points of depamental uncertainties, and the robustness and performance
ture from this notion of complexity, which are differentiated tradeoffs that are inherent in evolution and design, systems
in terms of their stance regarding the role of design. At onewnith “designed complexity” exhibit external structure and
extreme is the point of view that complexity “emerges” in failure modes over a broad range of scales, albeit at higher
systems that are otherwise internally homogeneous andensities and throughput than those associated with the
simple[3]. This view underlies the theory of self-organized “emergent” systems. As we have described elsewhere in
criticality (SOQ [4-6], and the edge of chad¥] and sug- more detail[9—-13], emergent and designed complexity are
gests that large-scale structure arises naturally and at no apxtremely different, and we have argued that the latter is
parent cost through collective fluctuations in systems withmuch more relevant to biological, social, and technological
generic interactions between individual agents. In this scesystems where design and evolution amidst environmental
nario structure is associated with bifurcation points and criti-uncertainty plays a role.
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The aim of this paper is to determine how the characterthat approaches the critical density to unit density. In the
istics of designed systems change as the resolution of thamit of large numbers of DDOF’s near critical regions form
design is varied. Two questions then are central to this line oincreasingly narrow linear barriers that bound compact unit
research. Can systems be classified in terms of their relativéensity regions characteristic of HOT.
complexity? Is it possible to quantify the amount of design? Studying the system as a function of the number of
For real systems, this defines an inverse problem. The go&DOF's provides a concrete, quantitative measure of the
would be to determine the extent to which a system deviategtructured sensitivity that is a central feature of tbbust,
from a generic, random configuration, or some other nullet fragile HOT systems. As the number of DDOF's in-
hypothesis, by identifying a series of performance géials ~ Cr€ases, .the system becomgs |n'creasmgly robust to common
equalities that measure these deviations, along with tunabl@€rturbations: the average yield increases, as does the ability
parameters, which can be used to narrow the set of accepf?f the layout to resolve feat_ures in _the dlstrll_)utlon of sparks.
able configurations from the generic, random starting point] "€ Systém also becomes increasingly fragile to rare events,

towards selected states that satisfy the performance goafd@nges in the distribution of sparks, and flaws in the design.
However, we are not yet at a point where we can solve thd his occurs .because the increasing density puts more qf the
inverse problem for real systems. Instead, we propose a fopyStem at risk for potential failure, and narrower barriers
ward design problem in the context of a lattice model andMP!Y increasing sensitivity to design flaws.
introduce a single, simple framework for optimization of _ '€ remainder of this paper is organized as follows. In
yield (the performance gopWwith respect to a specified num- _Sec. Il we describe the p(_ercolatlpn forest fire model, apd
ber ofdesign degrees of freedof@DOF’s), which represent introduce our scheme for increasing the number of design
the tunable parameters. Varying the number of DDOF’s aldegrees of freedom. _
lows us to interpolate between systems with minimal design, " S€C. Il we describe a sequence of numerical results for
and those that are highly designed. increasing DDOF's. While optimization of a system with just
We investigate the consequences of increasing DDOF’s i} féW design parameters can be computed brute force, con-
the context of the percolation forest fire mofe#], which is strained optimizations a,re required to extend our results to
a variant of site percolatiofil5] on the two-dimensional 2r9e numbers of DDOF's. _
square lattice. A spark impacts a standard percolation con- N S€c. IV we describe the results of analytical calcula-
figuration on an individual site, and burns the associated corfionS for @ spatially uniform distribution of sparks. HOT does
nected cluster. This model has been studied previously in th@0t léad to power laws in this case. Instead, with large num-
context of SOQRefs.[14] and[16]) and HOT[9-13,17,1& bers of DDOF’s the system breaks up into equal size HOT

By creating a spectrum of models that interpolates betweeff9i0ns of unit density, separated by linear barriers approach-
minimal and maximal design limits we can contrast the fea"d the critical density.
We conclude in Sec. V with a summary of our results. We

tures associated with criticality and HOT, and the tradeoffs _ ) ;
that lead to incremental shifts from structure that is associ@/SC_discuss alternative schemes of varying the number of
ated with fluctuations and emergence to that associated witHPOF's, and the role of DDOF's in more realistic settings.
deliberate, optimized layouts. Most importantly, we hope to
create a m_odel system in which design and nece_ssity hqve Il. THE PERCOLATION FOREST FIRE MODEL WITH
plear meanings, albelF severely abstracted from their meaning DESIGN DEGREES OF FREEDOM
in engineering and biology. For our model system, the no-
tions of emergence, complexity, and order have natural inter- The percolation forest fire model consists of a two-
pretations, which will allow us to clarify some of the poten- dimensionalNxX N lattice. Each site is either occupied by a
tial ambiguities. tree or is vacant, and each contiguous set of nearest neighbor
For the full spectrum of models, we assume that the latoccupied sites defines a connected cluster. The forest is sub-
tices are chosen to maximize yield in an external environject to external perturbations, represented by sparks. When a
ment. The measure of yield, and the external environmergpark hits a vacant site on the lattice nothing happens. When
remain fixed as we vary the number of tunable parametersl spark hits an occupied site it burns all the trees in the
When the DDOF's are optimized for the yield of “trees” connected cluster associated with the site.
after a single “spark,” we obtain random configurations at  The impact sitg(i,j) for the spark is drawn from a prob-
the critical density in the limit of a single DDOF, and a fully ability distribution P(i,j). If P(i,j) is uniform, then each
optimized HOT configuration, consisting of compact con-site is equally likely to be hit. IP(i,j)=68(i —ig)8(j —jo)
nected clusters separated by well defined linear firebreaks, ithen site {y,]o) is hit with absolute certainty. All other dis-
the limit of infinite DDOF'’s. Interestingly, in our formulation tributions lie between these two extremes, and represent the
the intermediate cases do not exhibit a gradual crossover, imore realistic case of variable risk, where ignitions are com-
the sense of, say, a smooth variation of the density, or aon in some regions and rare in others.
gradual shift in the power law or the typical size or shape of In random percolatiofl5], the state of the system is fully
events. Instead, the design variables, which correspond tharacterized by the densipy Individual sites are indepen-
local densities in different regions in space, always convergéently occupied with probability, and vacant with probabil-
to either critical or unit density. This occurs even when theity 1—p. Properties of the system are determined by en-
number of DDOF's is as low as two. As the DDOF's in- semble averages in which all configurations at densiye
crease, different portions of the lattice shift from a densitytaken to be equally likely. In the thermodynamic limit trans-
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lational invariance of the ensemble renders the choice of
P(i,j) completely irrelevant, and the densityaspriori the
only tunable parameter. However, when additional tunable
parametergdefined below allow for more detailed resolu-
tion of the spatial layout of the lattice, then the form of
P(i,]) plays a key role in determining the optimal state.

We define yieldY to be the number of trees remaining
after a single spark,

(b)

FIG. 1. Sample configurations for ta) critical and(b) HOT
Y=p—(I). (1)  percolation forest fire models on a %44 lattice. White sites are
occupied, and black sites are vacant. The critical configuration rep-

Herep is the density before the spark atidlis the average resents a sample from the ensemble of randomly generated configu-
loss due to the fire, computed over the distribution of sparkéations at the critical densitp.~0.59. The HOT configuration is
P(i,j) as well as the configurations in the ensemble V\/eobtained for the(constrainell local, incremental optimization

S . ; . cheme. HOT configurations have much higher densities and are
optimize yield as a function of the tunable parameters, giveri° ; C P S .
a distribution of spark®(i, ). stylized for the distribution of spark®(i,j) given in Eq.(2), which

7 is sharply peaked in the upper left corner of the lattice, where the
The number of DDOF's is a count of the parameters that/acancies are most concentrated, and form linear fire breaks.

are deliberately tuned to select the configuration or ensemble

of configurations that define the state of the system. For rantion at the critical density for a 6464 lattice. For a more
dom percolation, by construction there is only one DDOF—complete description of this model see Rdf0].

the densityp. Oncep is set the state of the system is defined In the local incremental algorithm, there are of oréi&r

by the ensemble of all possible configurations at density ~ DDOF's (since sites are individually assigned to be occupied
the opposite extreme, if we specifically choose whether eacbr vacant, but the number of configurations that are
site individually is occupied or vacant on & N lattice,  searched through to locate a maximum are far lesdl{)

then we haveN? DDOF's, which diverges in the imiN  {han the 2 required for a global search. In spite of the fact
—c. For large lattices, computing the globally optimal con-that the local incremental algorithm samples fewer configu-
figuration with respect tdN*> DDOF's rapidly becomes nu- - rations, both the brute force global optimization and the local
merically intractable, requiring consideration of 2candi-  incremental algorithm lead to highly designed systems, with
date lattices in order to select the best configurationmany common properties. Both lead to power law distribu-
Constraints may be imposed on the optimization to restrictions of fire sizes for a broad class Bfi,j), densities, and
either the number of DDOF’s, or the search space for optimayields that approach unity in the limit of large system sizes,
configurations, or both. and compact connected clusters of trees separated by linear
Previously a variety of constrained optimization schemesarriers. In both cases the number of design degrees of free-
were considered in the context of HOT, which presefe  dom diverges asl— .
DDOF's on anNx N lattice, but restrict the search for opti-  Finally, we consider intermediate numbers of DDOF's.
mal configurations. One example, which we modify for finite There are many ways to interpolate between one and infinite
DDOF’s in Sec. IlID, corresponds to a local incremental DDOF's. We consider a particular choice below, which is
algorithm for increasing the density. This algorithm consistsconvenient and tractable. We believe the basic trends pro-
of a local optimization in configuration space. Sites are ocduced by our scheme are characteristic of the general prob-
cupied one at a time, always choosing the next site to occuplem of incrementing DDOF's in percolatidthis is discussed
in order to maximize yield for the incremental change inin more detail in the conclusionalthough in the future we
density[10]. The result is a sequence of unique configura-plan to explore alternatives, especially those relevant to spe-
tions [when P(i,j) is chosen to avoid degeneradies in-  cific applications.
creasing density, which trace over the full interval Our scheme is based on subdividing th& N lattice into
e[0,1]. In the case of degeneraci@s., two choices of the equal square celisee Fig. 2 This defines a X M lattice,
next site to occupy produce the same yjehisite is selected with each cell containing®= (N/M)? sites. Individual cells
randomly from the candidates, and the process continues uare characterized by a densjy;, where(l, J) defines the
til the lattice is fully occupied. Collecting the complete set of cell coordinate on thé X M design lattice.
configurations that arises when the random choices associ- The(l, J) sites are a coarse graining of tfigj) coordinate
ated with degeneracies are taken into account results in aystem describing the underlying lattice of vacant and occu-
ensemble of possible configurations at each density. With gpied sites. Our scheme is loosely analogous to an inversion
without degeneracies, configurations selected by the local iref the traditional real space renormalization employed in sta-
cremental algorithm correspond to a set of measure zero itistical mechanics to analyze critical phenoméh@]. How-
the space of possible configurations at a given density. Thever, rather than starting with a configuration on the under-
ensemble defines a yield curw(p), which has a maximum lying lattice, and rescaling to obtain an equivalent density for
at somep=p,ox. Beyond this value there is a sharp drop inthe coarse grained version ultimately culminating in a fixed
yield. In the thermodynamic limitp,. approaches unity. point, here we individually prescribéand eventually opti-
Figure 1 contrasts an example of the maximum yield poinimize) a density for each design cell of thd XM lattice,
obtained by this algorithm with a typical random configura-which determines the ensemble of allowed configurations on
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to either unit density or a density that approaches the critical
densityp.. (The “critical” regions are bounded away from
pc, for technical reasons we will discuss this later.

Py Pyz (C) N—oo, M small We use the fact that;; converges to
p.— € (einfinitesima)) or unity to simplify our search of the
state space in the thermodynamic limit. This allows brute
force calculation of the globally optimal configuration for
M =<5 on anM XM coarse grained lattice. We begin to ob-
serve the design lattice breaking up into compact domains of
unit density, separated by uncrossable barriers of depsity
Py Py —€.

(D) N—, M large. To extend our results to larger design
lattices, we modify the local incremental algorithm consid-
ered previously in the context of finite lattices, to the case of

FIG. 2. Definition of theM xM design lattice(here M =2), the infinite underly.ing lattice, but a finit.e design Iatt!ce. Her.e
which is superimposed on the underlyihg< N percolation lattice ~ Cellular patterns similar to those previously associated with
of vacant and occupied sites. Each cell in the design lattice is chatHOT clearly emerge on the design lattice.

acterized by a density,; and all configurations at densipj; are - o
equally likely in the cell. The set dffp,,} with I, Je[1M] define We have verified that the qualitative results presented here

the M2 DDOF’s hold for a range of spark distributions, including Gaussian,

' exponential, and Cauchy. However, for consistency in this

paper, unless otherwise specified, we present our numerical

results for the same exponential distribution, scaled in a
anner that allows us to directly compare results for differ-
ntM andN. Specifically, we define the coordinate system so

that the origin lies in the upper left-hand corner of the lattice,

and thatx increases moving horizontally towards the right,

the portion of the underlying lattice enclosed in the cell.
When p,; takes a particular value in a cell on tihd&Xx M
design lattice, then all microscopic configurations associate
with the n? primitive sites on the underlyingy X N lattice
described by that density are equally likely in the cell. In

other words, sites on the microscopic lattice within the Ce”andy increases moving vertically downward from that point.

are independently occupied with probability;, and prop- : : o :
erties associated with the cell at that density are defined b}g/\(l)etﬁg?)l(e:tir};e\ldzs:crfte urll\(ljegxldnszla}t/tﬁe jm:ti the l:\lmt;r?duare,
the ensemble average, just as in random percolation, but re- ’ ey ' e

. . . . ake
stricted to the subspace of the underlying lattice that is de-

fined by the(l, J) cell. It is possible to tak&—co, yet keep P(x.v)=A ext —[(x/7.)+(v/ 2
M finite. In that case, the individual cells on the design lattice (x.y) =L+ () I @

are described by the thel’modynamic limit of standard ranwhere Ny and ny are characteristic |engths for the decay of

dom percolation at the prescribed cell density. the distribution along the andy axes, respectively. We take
7x=10, and n, =z, deliberately breaking the symmetry of
IIl. NUMERICAL RESULTS the distribution to avoid degeneracies. The consfaig de-

termined by normalization. To compute the probability of a
In this section we present the results of a sequence dpark hitting a particular sité, j) on the discrete lattice, we
numerical computations, which illustrate the effects of in-integrate the continuous distribution over the square corre-
creasing design degrees of freedom. We begin with brutgponding to the site,
force calculations on finite lattices and limited DDOF’s. Our
observations lead to insights that simplify calculations in the . I/N
limit of an infinite underlying system. For small numbers of P(.1)= f(
DDOF's we compute globally optimal solutions. For large
numbers of DDOF’s we introduce a modified version of theTo compute the total probability of hitting a céll J) in the
local incremental algorithm on the design lattice. design lattice, we compute the corresponding integral over
For anM XM design lattice superimposed on &N the area of the design cell,
underlying lattice, the sequence of computations is summa-

: . JIM /M
rized as follows: P(I ,‘]):J J P(x,y)dx dy. (4)
(A) M=1. We begin by reviewing the case of a single P Dm

DDOF, whe.re optimization.of the yield leads to criticality. Specific designed configurations depend on the details of
(B) N finite, M small This corresponds to the case of a P(x,y) up to the resolution of th&1 x M design grid.
finite underlying lattice and just a few DDOF's. In this case

we compute the optimal subregion densities of &M
lattice by averaging over random sample configurations at
different sublattice densities. Interestingly, this calculation We begin with a single design degree of freeddvh,
shows that afN gets large, the subregion densities converge= 1. The state of the system is characterized by the depsity

i/N
f P(x,y)dx dy. 3)
(i-1)IN

i—1)/N

A. Criticality—the optimal solution for a single DDOF

016108-4



DESIGN DEGREES OF FREEDOM AND MECHANISHI. . . PHYSICAL REVIEW E 66, 016108 (2002

1 1
(a) (b)
0.8 08
06 06 FIG. 3. The onset of percolation and the
\/8 % maximum yield point coincide for a single design
Roa >'_“ 0.4 degree of freedom(a) illustrates the percolation
probability P..(p) that is simply related to yield
02 02 Y=p—"P.(p)? illustrated in(b).
00 02 04 06 08 1 00 0.2 04 0.6 0.8 1
Density p Density p

and all configurations of density are weighted equally. In P, (p<p.)=0 since there is no infinite cluster. Ap.,

the limit of largeN, the choice ofP(x,y) is irrelevant be- P, (p=<p.)=0 because even if an infinite cluster exists, it is

cause the ensemble @spriori translation invariant. The re- fractal. At density 1, the system is fully occupied, corre-

sults forM =1 follow directly from known numerical results sponding to a single systemwide cluster/&q1)=1. As the

for site percolation on a square lattice, which we summarizlensity decreases from unity back towards there is a

below. single macroscopic percolation cluster along with many
The model exhibits a continuous phase transition at denseparate isolated islands that are microscopic in size. The

sity p.~0.592, which is associated with the emergence of amnicroscopic islands become exponentially rare above a char-
infinite connected cluster. In the limit— oo, for p<p. there acteristic Sizeélw(p_pc)—v’ with »' = =14 (analogous to

is no infinite cluster. .|:0I’p>-pc an infipite cluster exists ihe microscopic islands described above for densities,).
somewhere on the lattice with probability one. At pc the g the density decreases, the macroscopic percolation cluster
probability of an infinite cluster lies between zero and unity,acomes increasingly sparse, and the characteristi¢: siae
and depends on the shape of the lattice. For a square-shapgeg isolated islands increases. However, the only time a spark

Iatti_ce the probability of cr(_)ssing between_ opp_osite sides Waga4s to a macroscopic decrease in the density is when the
derived using conformal field theory, which yields an exactyercolation cluster is hit. This occurs with probability
probability of 1/2[20,21]. It was later confirmed numerically P.(p).

[22]. More general expressions are also derived for rectan- - consequently, the yield can be simply expressed in terms
gular regions, where the crossing probability is a function of¢ 1,0 percolation probability
the aspect ratio.
At low densities, the lattice is sparsely populated, and  Y="P,(p)[p—P.(p)]+[1—P.(p)lp=p—P-(p)>.
breaks up into isolated clusters of a range of sizes, cutting off (5)
sharply at a characteristic size, defining the correlation length
& Clusters of size greater thahare extremely rare. Below
the critical density¢ is finite and independent of the system In the first equality, the first term corresponds to the prob-
size as long as the system is large enough. This implies thaibility of hitting the infinite cluster, in which case the density
at low densities there is on average zero macroscopic logbat remains after the hit is the initial density minus the den-
associated with a fire ignited by a single spark. In othersity associated with the infinite cluster. The second term cor-
words, the average number of sites lost in a fire remainsesponds to the probability of missing the infinite cluster, in
bounded, of ordeg? or less, and does not scale with the which case the full density is recovered. o p., P..(p)
number of occupied sitesN?. While some rare configura- =0, andY=p is monotonically increasing ip [see Fig.
tions do contain macroscopic connected clusters at low derg(b)]. For p>p., Y(p) is @ monotonically decreasing func-
sities (e.g., configurations in which all sites are connegted tion of p. While the density is increasing, the increasing size
they are sufficiently unlikely within the ensemble of all pos- of the infinite cluster leads to increasing average losses. Of
sible layouts that they do not contribute any statistical weightourse, not all configurations have large losses. HOT con-
to the loss in the thermodynamic limit. figurations are designed for small losses up to unit density.
Approaching the critical density¢ diverges, é~(p.  However, typical configurations have large losses, and domi-
—p) 7, with v=4/3. At p.. the system exhibits clusters that nate the random ensemble.
extend to the size of the system. At criticality, the largest Therefore, forM=1 the critical densityp. maximizes
clusters are fractal and the number of sites scaleblas yield. At p., P..(p.) =0. The infinite clustefif it exists) is a
whered;=91/48<2. Since the number of sites overall scalessystem spanning only sparse fractal object of microscopic
asp.N?, even atp, the macroscopic loss in density is zero, density. Additionally, the distribution of cluster sizes is a
although there is a nonzero probability of crossing. power law, reflecting the fractal self-similarity of the critical
At densities greater than or equal to the critical densitystate, with a finite-size scaling cutoff determined by the sys-
there is an infinite cluster and the probability that any giventem size. The power law in the cluster size distribution leads
site is on the infinite cluster defines the percolation probabilto a power law in the fire size distributidithe fire size dis-
ity P.(p), illustrated schematically in Fig.(8. Below p., tribution is based on the occurrence of fires, where the prob-
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ability of hitting a cluster is proportional to its anewhich  obtain smooth curves and convincingly locate the maximum.

written cumulatively takes the form We subsequently increadéfor fixed M in order to extrapo-
W late our results to the thermodynamic limit of the underlying
F(D~179g(&(p)IN). ®) lattice, while keeping the number of DDOF’s fixed.

HereF (1) is the cumulative probability of a fire that results ~ S°Mething interesting happens even for the smallest num-
in the loss of greater than or equalltsites. For site perco- Per of design cells. Al becomes large, each of the densities
lation on a two-dimensional square lattice the exponent P €ither converges rapidly to unity or more gradually to-
~0.05. Note that this distribution is very flat, and differs Wardsp.. This was seen previously in the mean field limit
from the noncumulative density describing the cluster sizé18]. The results presented here provide evidence that similar
distribution by roughly two in the exponerigoing from results hold on finite-dimensional lattices.
clusters to fires increments the exponent by roughly one, Below we illustrate numerical results for the cdde=2,
and going from noncumulative to cumulative distributionswhich divides the underlying lattice into folN/2X N/2 de-
also increments the exponent by dn€he functiong(&/N) sign cells. Similar results are obtained for even smaller num-
determines the finite-size scaling cutoff. As—« this im-  bers of DDOF's, e.g., when thigX N lattice is divided into
plies that the loss in density of the characteristic large fireswo N/2X N design cells(we will return to this case after
becomes vanishingly small, scaling iS1/N2. discussingV =2). Here we use the first case that preserves
In summary, maximizing yield(p) as a function of den-  symmetric design cells for our most detailed discussion for
sity for a single DDOF leads tp=p, and the fire charac- simplicity and consistency of notation and figures throughout
teristics are the common features associated with systems gfe paper.
a critical phase transition. At this density the system on av- \ne considered a sequence of lattice sikes16, 32, 64,

erage sustains no net loss. Nonetheless, the distribution Qbg of the underlying lattice. Each lattice is divided into four
fire sizes extends up to a size the scales with the size of thg

The fi df Lin sh d th qual cells, defining a22 square design lattice. We com-
system. [ne fires are sparse, and ractal in Shape, an t lite the yield as a function of the four independent densities
characteristics are uncorrelated with the spatial distributio

of ignitions (p11:P12:P21,P22), by averaging over 100 randomly gen-
: o . . . ted fi ti f h density i h desi Il.
While optimization for yield with a single DDOF leads to erated configuralions o each density In each design te

. L Our numerical algorithm for generating these configura-
the critical state, it is important to note that the arguments; < is as follows. For each of the 100 members of the
that lead to criticality here and in SOC are slightly different. :

ensemble we use to compute each average, we assign a ran-

SOC is based on an implicit dynamical argument, which bal - numberz(i,j) in the intervalz(i,j) € [0,1] to each site

ances the infinitesimal rate of ignitions and slow but steadyi,j) of the underlying lattice. The random configuration in

growth of trees. SOC seeks a fixed point that is a statisticall esign cell(1,J) corresponding to density,, is obtained by

ste_ady state of the dynamics Ina system that.exh|b|ts asep enerating the configuration in the design cell where sites are
ration of times scales. Thus SOC involves tuning rates, whil

S . - g ccupied whenz(i,j)<p,; and vacant where(i,j)>p,;.
criticality involves tuning densities. While in some Cas€S.\ve accumulate statistics for yield as a function of the four

gL;nr;]neg nruar;ebsermoa]:stDeglr:T)s ng/rgn ?ﬁgﬁﬁsl'zg’sebgéhmg“:ﬁl\;?e:ihe%esign parameters by independently incrementing the densi-
. : y fles in small steps and then averaging over the 100 different

remain. The SOC forest fire model does not correspond to &alizations of the random numbezd ,})

critical system in the usual sense of equilibrium statistical In Fig. 4 for N=64 we iIIustra,t{a .cross sections of

mechanics, and exhibits scaling properties different than org, expressed individually as a function of each the four

dinary percolatior{14,23. In contrast, our model explicitly densities alona slices of the five-dimensional space
invokes optimization, so that deliberate feedback or evolus P13 9 P

tionary selection pressure is the underlying mechanism oy (P11:P12:P21,p22), Which pass through the absolute maxi-

selecting the state, even in the limit of a single tunable pa_mum value ofY[e.g., we plotv(p,,) for fixed values op,,,

rameter. While yield(i.e., mean productivityis a natural P21’ and p2, commd!ng with the maximurh Note that for
candidate for fitness, alternative optimization functions®2¢" Plot, the maximum o¥(p,y) occurs forpyy=~pe or
based, e.g., on some linear combination of the variance a =1 In this pgmcula.r case, the maximum valueois
loss could be defined in a manner that may lead to optima_zlo'7493 and is obtained fgs1,=0.4515, p15= p21= p2

behavior away from criticality. i . . . . .
y y The unit density maxima ap,;=1 are associated with

increasing values o¥(p,;) at the endpoint of the interval
defining possible values, and are well defined even for finite

Next we consider cases witld >1, but small enough to N because the discrete underlying lattice plays a minor role
allow explicit computation of the optimal solution for finite when the cell is fully occupied. In contrast, the position of
lattices. Specifically, we compute yield as a function of thethe maximum that occurs in the upper left cell for the density
M2 design cell densitieg,; by generating a random sam- p,; nearp. does depend on the system size. In Fig. 5 we
pling of configurations in which we independently vary the illustrate the results of increasing the size of the underlying
p1; . From this we determine the optimal yield configuration lattice, which illustrates that the position of the maximum
as a function of theM? cell densities. For small enoud¥i (i.e., the value ofp;; wheredY/dp,,=0) is converging to-
and N we can compute enough random configurations tovards the critical density, .

B. Explicit optimization on finite lattices with few DDOF’s
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02 02 (@ (b) (© (d)
or — 1 o} — 1 External Spark Distributions: P(X,y)
Density P, Density P,,
1 1
0.8 _ X
s 0.6 FIG. 6. Sample optimal configurations of the design lattice for
K5 four different P(x,y). Black cells correspond to density neas,
P 04 Maximum while white cells are at unit density. Below the configurations we
02 02 illustrate the corresponding spark distributions in gray scale, rang-
ing from higher valuegblack) to lower valuegwhite). The distri-
% Py . % pys | butions are(a@) the asymmetric exponential in E), (b) a Gauss-
Density P,, Density P, ian, (c) an exponential that depends only ynand decays moving

downward in the lattice from the peak value taken at the top, and
FIG. 4. Cross sections of the yield through the maximum plotted(d) & uniform distribution.
as a function of one of the four design cell densities:
Y(p11.p12.p21,p22), the other three remaining fixed. The results other three cells are at unit density, as described in Fig. 4.
are illustrated foN=64. Figure Gb) represents another case in whie,y) is ex-
tremely sharply peaked. In this case, the distribution is
Sample solutions obtained for different distributions of Gaussian, and we obtain a solution of the same form as for
sparks are illustrated in Fig. 6. The optimal solutidisp  case(a). As the sharpness d#(x,y) is reduced, other solu-
row) and the corresponding spark distributidPéx,y) (bot-  tions are observed. Figurdd represents a case where the
tom row) are shown. Figure (8) corresponds to the asym- distribution is exponential iry and uniform inx, and the
metric exponential in Eq(2). Here the optimal solution cor- solution corresponds to near critical density regions in the
responds to the upper left cell at the critical density, and theipper half of the lattice, and unit density regions at the bot-

1 T T T T T T T T T
+ = 16x16 lattice
091 x = 32x32 lattice
0 = 64x64 lattice
°8r L. % = 128x128 lattice
0.7F . FIG. 5. Lattice size dependence of the results
presented in Fig. 4 illustrates that the valueof
06} i at the maXImum OfY(pll,plz,pzj_,pzz) con-
>_. ' 06 verges top. as the system size increases. Results
are shown for lattice sizeN=16,32,64,128, and
05 ] illustrate that the density,; that maximizesy is
QL N converging towards the critical density,
>—4 04} § ~0.592 with increasing system size. The main
figure illustrates the cross sections analogous to
04 L o .
03k = ] those presented in Fig. 4, but with increasing sys-
a tem sizes, and the inset illustrates the valup Qf
at the maximum ofY as a function of inverse
02r T system size.
01} %% 1
N
0 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1

Density p, |
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tom. Figure &d) represents the case of a uniform distribution different. Indeed, the special loss and crossing properties as-
of hits. Here the solution corresponds to a single unit densitgociated with cell densities approachipg and at unity,
region, with the remainder of the lattice near the dengjty  which hold(following standard results in percolation thepry
Because the distribution is uniform, the placement of the uniin the limit N— o simplify our subsequent calculations enor-
density cell is arbitrary, leading to four degenerate optimaimously. The description of cells at unit density is trivial: if a
solutions. In general, in the limNl—co the optimal solution  spark strikes the cell all sites are lost, as are all sites in any
for the design lattice can only depend on the distribution ofother unit-density cell that is connected to the sparked cell by
sparksP(x,y) up to the resolution of the design lattice. This a contiguous path of nearest neighbor unit-density cells.
follows from the fact that each cell is described by the trans\when a spark strikes within a cell at or below densgity,
lation invariant ensemble of configurations characterizedhere is no macroscopic loss of density. The probability that
only by the density, which washes out all structures associfire will propagate into a neighboring cell from a hit in a
ated withP(x,y) beyond the cumulative probability(l,J)  critical cell is also zero, because the infinite clustiérit
[Eg. (4)] that the region is hit. This essentially trivial result is existy is sufficiently sparse that the chance of hitting it are
consistent with our finite lattice simulations, where the edgenegligible.
effects associated with finite grids on the underlying lattice, The only subtleties arise when considering the possibility
which are relatively small to begin with, become increas-of fires propagating from one unit-density cell to another
ingly insignificant in the limit of largeN. through a region of density at or nepg. First consider a
Similar results are also obtained for both lesser andpark that ignites a unit-density cell, which is separated from
greater resolutioM of the design lattice. At the cost of in- another unit-density cell by an intermediate cell that must be
troducing asymmetric cells, we can reduce the number ofrossed from top to bottom or left to right to obtain a con-
DDOF's to two. In this case we again find that the cell den-nection. If the intermediate cell has density greater than
sities converge tg. or unity. For the case of a uniform the crossing probability is unity. If the intermediate cell has
distribution of sparksP(x,y) the optimal solution corre- density exactlyp., there is a finite probability of crossing,
sponds to the critical density in each cglk=p,=p.. This  which depends on the shape of the intermediate region. As
solution is maintained until a point where there is SufﬁCientpreviously stated, if the contiguous intermediateregion is
asymmetry inP(x,y). At this point the cell that is less likely square, the crossing probability is exac#y{20,21]. How-
to be hit, say cell two, has optimal density 1, while the moreever, if the density i.— €, wheree can be taken infinitesi-
likely cell, cell one, trivially remains at the critical density. mally small, the probability drops to zero. Thus fisr>2
The amount of asymmetry required is a function of the criti-DDOF'’s (where the issue of intermediate cells becomes im-
cal densityp., and is thus dependent on the underlying per-portanj, the “critical” regions will remain bounded away
colation model. LettindR(1)=P(1,1)=p be the cumulative from criticality (at infinitesimal cost in density, but substan-
probability of hitting region 1, andk(2)=P(1,2)=1-p, in  tial gain in yield to avoid connecting unit-density domains.
the limit of large system sizes we can compute the yield as a The final case we must consider is that of next nearest
function of the second design cell densi¥(p.,p>), neighbor unit-density cells. That is, consider two unit-density
cells that share a common corner, but are otherwise separated
Y(pe1p2) =pctPp2t (1=p)lpa—Pulp2) |- 7 by cells at or near the critical density. At and above the
critical density, the probability of a path connecting the unit-
When the asymmetry is such that>p., then the optimal density cells through the intermediate critical cell is one.
solution for cell two shifts fronp. to unit density. Above the critical density this follows from the fact that
For larger values oM our computations are limited by connected paths between adjacent sides of a cell are more
the numerical intensity of computing the optimal valueYof likely than crossings between opposite sides, because of the
as a function oM? design parameters. We have gone as higimany finite paths connecting adjacent sides. The existence of
as M =3, which requires a reduction in the number of con-many finite paths also insures that for densities below criti-
figurations we randomly sample to compute the averages. gality, the probability that the corner connected unit-density
more efficient method of computing optimal solutions beginscells are joined through the intermediate cell remains finite.
with the assumptiolN =2 and makes use of the observation Unlike the probability of a crossing between opposite sides
that the cell densities converge towaggsor 1. This is pre-  of a cell, which is strictly zero below the critical density, the
sented in the next two sections. probability of a crossing between adjacent sides is honzero
for all p>0. For example, occupation of the single site at the
o o _ _ corner of the cellwhich occurs with probability) is suffi-
C. Global optimization for an |nf|n|:[e underlying lattice and cient. In fact, numerically we find that the probability of a
few DDOF's crossing between adjacent sides of a square cell monotoni-
In this section, we obtain globally optimal solutions by cally increases with density, and continuously approaches
brute force optimization of tht X M design lattice layout, unity atp=p.. In particular, we find that whep=p.— e,
subject to the assumption that individual cells are near critithe probability of a crossing between adjacent sides remains
cality or at unit density. Both criticality and unit density co- essentially unityf1—O(e*) from some G y<1]. Thus, cor-
incide with fixed points of the renormalization group in the ner connections are equivalent to nearest neighbor connec-
standard statistical mechanical formulation of percolationtions on the design lattice in the limit of lardé In our finite
However, properties of these two fixed points are extremelyattice simulations(for design lattices up to :8 3), we ob-
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Configurations

FIG. 7. Global optimization of the design lat-
tice for M<5. Solutions are obtained by consid-
ering all possible design lattice configurations,
with p;;e{p.—€,1}. ForM=1 the optimal solu-

_ _ _ _ tion is the critical density. The top row illustrates
(@) M=2 (b) M - 3 ) ,(C) M =4 @M=35 the optimal configurations foM = 2,...,5 (black
Event Size Distributions corresponds to a density approachipg, and

- : -t : -t 5 I white corresponds to unit densjtyand the bot-
:-2 tom row illustrates the macroscopic portion of the
E,_a . corresponding event size distributions for each
T case.

-4 -2 0 -4 -2 0 -4 -2 0 -4 -2 0

In(h

serve that corner connections are always excluded in optimafitical density. Each cell at densipy.— € contributes cumu-
solutions, forP(l,J) sufficiently smootH24]. For example, lative weight to the event size distribution given by the total
with M=2 and a uniform distribution of hits, the optimal probability P(l,J) [Eqg. (4)] of hitting within the cell. With
solution has only one unit-density cétather than two that probability (1— p.)P(l,J) +O(e) it hit a vacant site within
are diagonally connectgds illustrated in Fig. @l). See Ap-  the cell, and with probabilityp.P(1,J) + O(e€) an occupied
pendix A for a further discussion of corner connectivity.  sjte is hit. The critical events span a range of sizes which

When we assume an infinite underlying lattice, we are notgjes ag(1)~1~« with a~0.05, but which all scale to zero
a priori restricted to considering site percolation on the tWo-|5«< in the limitN— oo [see item(7)].

dimensional square lattice as the underlying statistica

. ; ) : ; (6) The cluster size distribution associated with cells at
model. Site percolation on the two-dimensional square lattic

. . : Tinit density is determined by their connectivity, each with
flxgs the valqe Op, at 0.592. While the partpulgr layout of statistical weight determined by the cumulative hit probabil-
optimal solutions does depend pg, our qualitative results . . ,

. o . ity summed over the area of connected regies defined
are independent of the specific value. For consistency we

. ! i ) - ; ._above.
retain this choice. The disadvantage is that site percolation (7) The overall event size distribution thus has two con-

on the two-dimensional square lattice has not been soweﬁibutions one from cells at density approachiagand the
rigorously. If we had chosen an underlying model for which ther from cells at unit density. These scale differently in the

percolation results were mathematically rigorous, many o imit N Specificallv. the events in the.— e recions are
our results for adding DDOF’s would be mathematically pre-. .~ ~ =~ P Y I’QC. € regio
infinitesimal, with the largest events scaling¥, with d;

cise as well. 01 . . 2 .
In the limit N—«, we use the following results from gitﬁj’tecdorggggsgirfg ttlge;%r;?'lvtg’r Vl\gzl"gc(h SI():al?,a v?ﬁgrg's'
ercolation theory and the previous subsection to calculat ; e Tl o W @
P y P ~0.05. The events associated with the unit-density cells con-

both the yield and the event size distributions. . . . . .
sist of a discrete set of sizes, with macroscopic loss.

1. Propagation Next we compute the globally optimal configuration by

(1) Cells atp,— e experience no macroscopic loss in den-explicitly considering all of the ¥° possible configurations,
sity in a fire, and fires do not propagate macroscopic disand picking the one with highest yield. Because the number
tances across the cell. of configurations increases extremely rapidly wih this

(2) Fires do not propagate from left to right or from top to brute force global optimization rapidly slows down and be-
bottom across cells at densjty— €. Thep.— € cells thus act  comes computationally intractable fivt>5.
effectively as fire breaks for vertical and horizontal propaga- Our results forM <5 are illustrated in Fig. 7 for a fixed
tion. distribution of sparkP(x,y) [Eq. (2)]. Black signifies den-

(3) Fires will propagate between adjacent edges of cellsjty p.— e in the design lattice, and white signifies density 1.
with densityp.— e (see Appendix A This implies a corner wjth M=1 (not shown criticality is the optimal solution,
connection between cells at unity density is effectively theand the event size distribution is that of criticality. Fdr
same as a shared edge. _ =2 we recover the pattern of critical and unit-density cells

(4) Cells at unit density experience total loss when a sparknat the corresponding discrete lattice simulations was con-
hits the cell, or when fires propagate into the cell from nearyerging towards with increasiny [Fig. 6(@)]. Specifically,
est (edge connectgdor next nearestcorner connectéd the cell in the upper left corner is near the critical density,
neighbor cells at unit density. while the remaining cells are at unit density. A single event is
illustrated in the corresponding event size distribution—the
large event that occurs if any of the sites within one of the

(5) The cluster size distribution in cells at density— e is  three unit-density cells is hit. Since the size of all of the
identical to that of site percolation in the neighborhood of thecritical events in thep.— € cell scale to zero abl—=, we

2. Event sizes
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cannot illustrate them on the same logarithmic graph. imposed on an infinite underlying lattice. Ruleg—(7) de-

As M increases, increasing resolution of the design gridined in Sec. Il C for calculating yields and event size dis-
results in increasingly refined patterns. The first aspect ofributions continue to hold. The only difference is that here
this, which emerges foM =3,4, is increased resolution of we restrict the search space for optimal solutions. Thus we
the spark distributiorP(x,y), through more refined place- are not guaranteed or even likely to converge to the globally
ment of thep.— e barriers. This placement is subject to ir- gptimal solution for a given value d¥l. Nonetheless, as in
regularities imposed by the combination of the continuousyyy previous analysis of finite latticd®,10], the general
distribution of sparks and the finite design grid. For bothprgperties of increasingly designed states are independent of
M = 3,4 there is still a single region at unit density. However, e specific constrained optimization performed.
it is clear from the comparison of the event sizes and prob- the gigorithm is defined as follows: We begin with each
abilities for M :2'3.’4 that with increasing t'he size of the. .. cell at densityp.— €. We incrementally increase the density
Iarg(_a event is staying roughly constant, while the probab|I|tyt0 unity by converting cells to unit density one at a time. The
of hitting the region is decreasing. choice of which cell to convert at each incremental step is

For largerM (M=5), we begin to see multiplé¢here , . . - s
three unit-density regions, separated by barriers formed bydetermmed by testing all possible remaining choies,

nearest neighbor connected paths of design cells at densi%?"s that are still at densnyp— €) to .determlrie Wh'.Ch cell,
pc— €. The width of the barriers corresponds to the width of! c.onver.ted, leads to the_h|ghest yield configuration on the
a single design cell, and they are concentrated near the upplé\mce' given that one additional cell must be conveited. That.
left-hand corner of the lattice that has the highest probabilityP®St Cell is then converted, and the procedure continues until
of sparks. They are also concentrated towards the left edge i€ lattice is fully occupied. In the case of degeneraties
the lattice, more than the top edge, because the asymmetry 8f more choices produce identical outcopesne of the
the exponential distribution implies the probability of sparkschoices is selected at random.
falls off more rapidly along the horizontal axis, compared to  For eachM, this procedure generates a discrete curve of
the vertical axis. As a result, smaller events occur in regiongield vs density (Fig. 8), with density increments of (1
that are more likely to be sparked, while large events occur-p)/M? as additional sites on the lattice are occupied. The
in regions where sparks are rare. Although the data are stitonfiguration associated with the maximum value Ybf
extremely sparse, the relative probabilities of fires in thregmarked by the arrow in Fig.)8s the optimal configuration
unit-density regions are consistent with power law statisticsor the search. These are illustrated in Fig. 9 for increasing
produced for much larger latticésee Fig. 9. values ofM. The search is local in the sense that the con-
As M increases the patterns become increasingly reminisiguration associated with each increment in density is based
cent of the HOT configurations obtained previously throughon the configuration at the previous increment. Compared to
constrained optimization on finite lattices. In those studiesine prute force global optimization in the previous section,

individual sites were chosen to be occupied or vacant, and here all of the possible™ configurations are considered

connected barriers of vacant sites defined firebreaks separaé candidates for the optimal confiquration. here we search
ing compact connected clusters of occupied sites. The diffel i P 9 Lo .
ver a restricted space of less thitf possibilities. This

ence here is that our finite lattice is the design lattice, whict? ,
is superimposed on an infinite underlying lattice. Barriers2/lOWS us to consider much larger valuesMfthan are ac-
and occupied sites correspond to design cells at depsity C€SSible in the brute force global optimization.
— € and unity, respectively. There are a few technical differ- Here we see that for small values bf (M=1,2,3) the
ences between our calculations here and the analogous opifsults agree with results obtained by global optimization in
mizations on finite lattices: on the finite lattice fires do notFig. 7. However, for more than two DDOF's this need not
spread between next nearest neighboes, corner connec- generally be the case. For example, for the case of three
tions), and calculations of the yield weight barrier sites asDDOF’s, the local incremental algorithm will always convert
zero (vacan} rather thanp.— € (critical). By taking these the cell that is least likely to be hit from, — € to unit density
differences into account, algorithms for global optimizationfirst. However, for soméP(x,y) the globally optimal solu-
of small lattices are easily modified for the small finite de-tion will not have that site at unit density. Nonetheless, the
sign lattices superimposed on infinite underlying lattices conqualitative features obtained from the local incremental algo-
sidered in this section. This suggests the next step in ouithm are similar to those obtained by global optimization.
numerical Optimization, which is to modlfy our constrained Here we again see that increasing valuedvbfead to in-
optimizations for finite lattices, to develop analogous con-creasingly refined patterns composed of compact connected
strained optimizations for a finite design lattice superim-cjusters at unit density, separated by barriers one design cell
posed on an infinite underlying lattice. wide at density neap.. Furthermore, because we access
larger values ofM, we begin to deduce the emergence of
systematic trends associated with increasing design, which
we verify analytically for the case of a uniform distribution
of sparks in Sec. IV. These are deduced from Figs. 9 and 10,
In this section we generalize the local incremental algowhere Fig. 10 illustrates the peak valuesYobbtained from
rithm discussed in Sec. Il arfd0] for obtaining HOT states searches analogous to that illustrated in Fig. 8. We conclude
on finite lattices to the case of a finite design lattice superthis section with a summary of our observations.

D. Local optimization for an infinite underlying lattice and
many DDOF’s
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09 1
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08 —
L)
07 1 FIG. 8. Search for an optimal design configu-
ration for M =64 using the local, incremental al-
by 08 T gorithm. Design cells are converted from density
-— approaching, to unit density one at a time, in a
O 05 T manner that maximize¥ at each increment. This
'>: 04 ) results in the dense trace of blatls (which ap-

pear as a solid line for most of the cujvius-
trated in the figure. The optimal design configu-
ration [Fig. 9(f)] corresponds to the maximum
for this search.
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Density p

(1) IncreasingM leads to increasing densities and increas- (3) There are several aspects of ite(sand(2) that are
ing yields. This is illustrated in Fig. 10, where we plot the also apparent from the event size distributidRgy. 9). The
yield as a function of density for the locally optimized lat- increasing density with increasing [item (1)] implies that
tices for successive numbers of DDOF’s. The one exceptioin the event size distribution statistical weight from the mi-
to this trend in our numerical data is seen in compaiihg croscopic critical portion of the distributiomot shown is
=4 and M=8, where the yield of theM=4 solution is  shifted to the macroscopic portion, which we refer to as the
slightly greater than foM =8. This inversion does not dis- HOT tail. This is apparent in comparing the cumulative
rupt the overall trend, and arises due to the finite size of theveight in the HOT tail[deduced from the value df(l)
design lattice. associated with the left-most data pdjnivhich increases

(2) IncreasingM typically leads to decreasing average with M. Increasing DDOF’s also leads to increasingly refined
loss. In Fig. 10 the loss is measured by the vertical drop opatterns, which adds breadth to tail in the event size distri-
the optimal yield from the diagonal linézero losg. The  bution. Figure 9 illustrates the event size distribution of the
critical solution obtained foM =1 has zero loss. However, optimal configuration for different values . The fact that
the higher-density configurations obtained fdr>1 have the average loss decreases with increadihgitem (2)] is
nonzero loss associated with the unit-density cells. This i@another way of saying that the mean size in the event distri-
apparent in our numerical results, which show a drop frombution decreases with increasiivy
the diagonal line foM =2. AsM increases, the drop tendsto  (4) Finally, increasing density and spatial resolution of the
decreasgeven though the density is increasing, indicatingpattern, which is associated with higher yields for higher
more converted regiohsAs in item (1) there are exceptions DDOF's simultaneously introduces new sensitivities, reflect-
due to finite design grid effects. Nevertheless, the overaling the robust yet fragile nature of designed systems. Higher
trend is illustrated by the fact that the slope of the curvedensities imply increased fragility to changes in the distribu-
drawn through the optimal yield points is steeper than that ofion of sparks, and flaws in the design pattern, to which the
the diagonal one. critical configuration is entirely insensitive.

Configurations

FIG. 9. Optimal configurations and event size
distributions for the design lattice obtained using
the local incremental algorithm favl =2,4,8,16,
32,64 andP(x,y) from Eq. (2).

@M=2 OM=4 ()M=8 (A)M=16 (¢)M=32 (HM=64
Event Size Distributions
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! - ' - ' - - - - ' cal events still exhibit power laws. However, we no longer

ool M=64 ¢ | obtain power law distributions for the macroscopic events,

' M=32 A since they are all of equal size. Fully designed HOT configu-

sl M=16 * rations on finite lattices do not exhibit power laws for uni-

M=4 \ form distributions of sparks either. In that case, the cells are
M

o7 also square and of equal size, though the optimal barriers are

diagonal relative to the underlying lattice, which minimizes
08 Ml — 7 M= =2 the number of vacanciesince fires do not propagate be-
osh - ] tween corner connected sites on the underlying l3ttice
© The calculations in this section provide a quantitative,
o4t ; analytical illustration of the features associated with adding
DDOF’s that emerged as numerical trends in the previous
section. Namely, increasing DDOF'’s leads to increasing den-
sities, decreasing losses, increasing yields, and a shift in sta-
tistical weight in the event size distribution from critical
o1} ] events towards the HOT taihow a family of events, all of
equal siz¢ We begin by considering smalll, where just a
o 01 o2 03 o2 o5 o8 o7 o8 oo 1 few DDOF’s produce macroscopic increases in yield. This is
Density p followed by asymptotic analysis of the lard limit, where
we show yield approaches unity, and determine the charac-
FIG. 10. Yield vs density for the optimal configurations on the teristic event size of the unit-density regions.

design lattice obtained using the local incremental algorithm for
M=1,2,4,8,16,32,64 and(x,y) from Eq. (2). For eachM the
maximum is obtained from a run in which the density is incremen- A. Exact solutions for small numbers of DDOF'’s
tally increased as in Fig. 8. Here for clarity, for all bMt=1, we
omit the full scan over densities, and retain only the peak value.

0.3

021

0

WhenM is sufficiently small it is possible to exactly cal-
culate the optimal configuration by explicitly considering
relatively few choices. The uniform distribution of sparks
simplifies the problem by introducing many degeneracies in
the yield for different spatial patterns of the cell densities.

The symmetries associated with a uniform distribution of The yield can be written as
sparks make optimizzation of the yield in the percolation for- 1
est fire model withM~ DDOF’s more tractable analytically. _ = _

As in the previous section, we focus on the case of an infinite v M? {IE,J} p1I % P(ROARY) |- ®
underlying lattice. In this limit, the optimal design cell den-

sities are either approaching or at unit density, and rules

(1)—(7) of Sec. llIB can be used to determine the propaga-The first term on the left-hand side is the total density, writ-
tion properties between cells and the event size distributionden as a sum over the densities of the design ¢gll3, and

Optimal solutions typically consist of compact unit- the second term is the average loss. The loss comes from
density regions of equal size, surrounded by near criticagach of the unit-density design cells, which form a set of
barriers. Unit-density regions will tend to be of equal size,connected regiongR,} (the edge and corner connected clus-
because for uniform sparks, the area of a unit-density regioters on the design lattice. Here(R) is the probability of
defines both the hit probability of the region and the loss. Ifhitting regionR,, andA(Ry) is the corresponding aréae.,
one unit-density region is larger than another, then the largehe number of design cells in regidgy).
cell will both be more likely to be hit, and will also suffer a We obtain the following results for smai:
greater loss, causing an increase in the average loss relative M=1. As previously stated, the optimal solution for a
to that which would be obtained if the regions were of equalsingle design cell corresponds to the critical density.
size. The unit density regions will tend to be square, sur- M=2. For a 22 design grid, we consider the yields
rounded by critical barriers one design cell in width in orderassociated with zero to four design cells set to unit density,
to maximize density. Such a configuration minimizes thewith the remaining cells at the critical density. Since edge
number of critical density cells required to isolate the regionand corner connections of unit-density cells on the design

Deviations from this typical layout are associated withlattice are equivalent, there is no distinction between differ-
packing constraints that are encountered in fitting theent arrangements of unit-density cells once the number is
optimal-size unit-density regions into a design lattice of fi-fixed. Letting Y denote the yield fos design cells at unit
nite M. This results in some spread in the size distribution ofdensity, by explicit calculation we obtain ¥6,=0.592,Y,
the regions to accommodate the edges, which is of negligible=0.632, Y,=0.546, Y;=0.336, andY,=0.0. Thus forM
importance a$1 — . When the finite size of the design grid =2 the optimal solution corresponds to one design cell at
is not incompatible with the optimal region size, all regionsunit density, and the three remaining cells at dengity This
are square and of equal size even for fite is exactly what we found numerically on finite latticgsg.

For a uniform distribution of sparks, the microscopic criti- 6(d)].

IV. ANALYTICAL RESULTS FOR A UNIFORM
DISTRIBUTION OF SPARKS

016108-12



DESIGN DEGREES OF FREEDOM AND MECHANISHI. . . PHYSICAL REVIEW E 66, 016108 (2002

TABLE |. Analytical results for the optimal yield, density, and average loss for a uniform distribution of
sparks, withN—o~ andM X M design lattice, with unit-density regions of size

M m Yield Density Loss

1 0 0.592 0.592 0

2 1 0.632 0.694 0.062

3 1 0.724 0.773 0.049
|al’geM (1_pc)1/3M2/3 1_3(1_pc)2/3M*2/3 1_2(1_pc)2/3M*2/3 (1_pc)2/3M*2/3
M — 0 o, butm/M—0 1 1 0

M =3. For a 3x3 design grid a larger number of candi- density region ofm? design cells, and linear perimeter of
date configurations must be taken into account. Degeneraciégm+ 1) cells at density.— €. Neglecting terms oD(e)
introduced by the uniform distribution of sparks again sim-the yield that corresponds to this configuration is given by

plifies the search considerably, so that we need only consider 5 4
13 distinct configurations. After some algebra, the optimal Y= m + 2m+1 Pe— m . 9)
solution is found to correspond to unit-density regions in (m+1)?  (m+1)*7¢ M*(m+1)?

each of the four corner design cells, with the remaining five
cells forming a plus sign at density approachipg. The  The first two terms on the left-hand side correspond to the
yield in this configuration isy=0.724. density of thep=1, andp.— € cells, respectively. The last
Determining optimal solutions for larger valuesMfbe-  term is the average loss associated with the unit-density re-
comes increasingly tedious. However, eWdr=3 suggests a gions.
trend that we expect to continue for lare Namely, the It is a straightforward exercise to optiminefor fixed M.
optimal state of the design lattice breaks up into unit-density/e obtain
regions(in these cases corresponding to a single desigin cell
surrounded by critical barriers one design cell wide. For in- m~(1—pc)1’3M 213, (10)
creasingM, we obtain increasing densities, increasing yields,
and decreasing average losses. These results are summariZde key steps are outlined in Appendix B. From this solution
in Table I. As for nonuniformP(x,y), we again find that we can obtain asymptotic results for yie¥d
very few DDOF’s produce macroscopic increases in yield.
For smallM design lattices, the critical density barriers Y~1-3(1—po)?*M 2" (11
occupy a larger portion of the lattice than the unit-density
regions, even though they are a single design cell widethe density
However, adMl increases, the design cell size decreases, and
the critical barriers shrink in width, occupying less and less p~1—2(1—p)?*M 2" (12
area. Eventually the optimal number of design cells in each
unit-density region becomes greater than one, and will con
tinue to increase with increasirg. Since the barriers are a
single design cell wide, abl— it is possible to have an _L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
infinite number of barriers, which nonetheless occupy a van- 1 unit
ishing fraction of the lattice, leading to the asymptotic results }
of unit yield and density in the limiM — o, discussed in the m units
next section.

B. Asymptotic solution for many DDOF's

When the number of DDOF's is large, the optimal solu-
tion for a uniform distribution of sparks divides thé X M
design lattice intanx m square unit-density regions of equal
size, divided by critical boundaries of densipy—e. The
objective of this section is to calculate the optimal sizef
the unit-density regions for fixedl, in the limit M—x.
Asymptotically, we can ignore corrections associated with
packing the optimal size regions onto a finite design grid.
These terms correspond to small adjustmentamoaway
from the optimal value that does not alter the scaling.

The solution is represented schematically in Fig. 11. The
M X M design grid is broken up intan{+ 1) X (m+ 1) regu- FIG. 11. Schematic diagram of the optimal layout for a uniform
lar repeat units. Each of these consists of a square unittistribution of sparks.
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1 1 TABLE Il. Contrasting properties of criticality/SOC vs HOT.

(a) ©)
o.g| HOT region, large M . .
s - Characteristic Criticality and SOC HOT
506 /° =%
Y=p o Density Low High
o4 ~ 08 Internal Generic, Highly
>“0A2 configuration random structured
SOC, M=1 Loss Infinitesimal Macroscopic
02 04 06 08 1 088 2 4 6 8  10xl0 Events Fractal Compact
Density p M2 Statistics Power laws Power laws
Origin Internal Optimization
FIG. 12. Figure(a) illustrates yield vs density for the optimal of fluctuations, in a variable
configurations on the design lattice obtained using the uniform power laws criticality environment
P(x,y) solution forM=1, 2, 3 and 15M <1000, while(b) illus- Robustness Generic Robust, yet fragile
trates the yield as the number of DDOF’s are increased. Here Wghcreased Does not New structure,
plot the leading asymptotic results, and neglect small corrections yesolution matter and sensitivities
due to fitting.
and the average loss nitely large relative to the largetfractal) events in the criti-
cal regions, which lie within the barrier network.
(Dave=(1— PC)ZBM - (13

which are included in Table I. Numerical results plotting the V. CONCLUSION

yield as a function of density appear in Fig.(a2for large At a time when the study of complex system plays an
values ofM. increasing role in science, particularly in interdisciplinary
For finite M, corrections associated with possible misfitsendeavors, developing a more quantitative measure of such
of the optimalm'm squares on the finite design grid can be general concepts as complexity and design is important be-
calculated, and leads to some rectangular regions when th&use it leads to a more precise and common vocabulary that
fit is not perfect. A perfect fit occurs whev, orM—1isan  can be applied to different systems. The scientific field of
integer multiple of the optimalni+1). HereM —1 corre-  complex systems aims to link simple models and general
spond to cases where thex m squares fit perfectly, but the principles that arise in physics, mathematics, and engineering
last critical barrier is removed from the boundary row. How-to a wide range of real and genuinely complicated applica-
ever, asM — e corrections are negligible, and do not changetions that span many disciplines. In order to strengthen these
the leading asymptotic results given above. links it is useful to examine how the amount of design in-
As with smallM these results illustrate the general trendscluded in simple models may affect the nature of the com-
associated with increasing DDOF’s, which are consistenplexity that is observed. In simple models basic concepts can
with the numerical results of the previous section. Namelype investigated in detail, albeit in an abstract context. While
increasing DDOF’s lead to increasing densities and yieldsit is difficult if not impossible to imagine quantifying pre-
and decreasing losses. Results for smdk=1, 2, 3 (first  cisely the amount of design in everyday complex systems
three diamonds, in order of increasiiy and largeM (in-  such as ecosystems or the Internet, it is a common engineer-
creasingM corresponds to increasing are depicted graphi- ing and policy task to evaluate how tradeoffs associated with
cally in Fig. 12. AsM —< the yield approaches the maxi- alterations in design and added complexity may change the
mum value of unity. The fact that the slope¥¥s. pin Fig.  performance of a system for both better and worse.
12 is steeper than the diagonal definedYoy p illustrates Here we introduced a method for incrementing the num-
that the average loss decreases with increaging ber of tunable design degrees of freedom in percolation for-
Similar to our numerical results for nonunifor®(x,y), est fire models. This allows us to interpolate between low
the distribution of events breaks up into microscopic criticaland high design limits, corresponding to critical and HOT
events associated with,— e barriers and events involving states, respectively. The intermediate design states do not
macroscopic losses associated with the unit-density regionsepresent a smooth transition in the underlying configuration
In this case the critical events have the same power lawf the lattice, but rather a shift in the statistical weight asso-
statistics. Increasing DDOF’s again results in increasingiated with near critical regions towards unit-density regions
weight associated with the unit-density regions in the overalthat form HOT lattice configurations. The contrasting char-
distribution of events. However, for a uniform distribution of acteristics of criticality and HOT are listed in Table II.
sparks the statistics of the “HOT tail” are not described by a  Construction of a design lattice of cells superimposed on
power law, and instead correspond to a single size, or imn underlying lattice simplifies our analysis, given that per-
some cases a few sizes when packing corrections are takenlation isa priori a lattice problem. Our method is reminis-
into account. The characteristic size of unit-density regiongent of an inverted real space renormalization, but serves to
decreases with increasifg and becomes microscopic in the highlight the fact that highly designed lattices would not be
limit M —oo. However, because they correspond to a divergrenormalizable in the traditional sense. Rescaling the density
ing number of unit-density design cells, they are still infi- of a configuration, without specifically taking into account
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the barriers, would wash out the key features responsible for (a)
robustness.

One might argue that our definition of DDOF’s in terms
of a design lattice has biased our results towards solutions
that exhibit separate HOT and critical features segregated
into different regions in space. This is certainly a reasonable
concern, and worthy of further investigation. Our construc-
tion is artificial, and presumes the ability to define sharp
boundaries between regions of different density. However,
we expect similar results would hold even if the borders FIG. 13. Corner connectivity. Figuréa) and (b) illustrate unit-

between design cells were more diffuse. The fact #at gensity regions that are cormer connecteeixt nearest neighbars

— € corresponds to the highest density at which there is zerynile M=2 in (a), M is essentially arbitrary ih). It is presumed
loss and zero connectivity suggests that criticality may play gn the text that both are subject to a unifomfl,J) and that the
special role in the initial formation of barriers in any imple- unit-density cells are macroscopic.

mentation of increasing DDOF’s. Our design lattecgriori

restricts the near critical barriers to specific design cells. Ameyond the nearest neighbor connectivity represented in per-
alternative scheme might expand the dengi(x,y) as a colation. However, it is our belief that most natural and man-
polynomial inx andy, with additional DDOF’s associated made complex systems lie near the high design limit de-
with added terms in the expansion. For a single DDOF, onlyscribed by HOT.

the density is tuned, again resulting in criticality. The next H|gh-y|e|d lattices Correspond to an extreme|y small sub-
step would be associated with introducing a gradient. Whileset of all possible configurations, for which most single-site
such an expansion forces a smooth variation in the density, ferturbations are neutral in terms of yield. While the temp-
is the spatial placement of the critical density that plays theation is to say that these high-yield lattices are robustly high
central role in determining the solution, and serves as g§ield, the correct statement is that they are extremaiyst,
boundary between a lower-density region in which there isjet fragile because of their extreme sensitivity to a few rare
no net loss, and a high-density region in which loss is maceyents.
roscopic. For large numbers of DDOF’s in this scheme, criti-

cal barriers could be resolved with increasing sharpness and
spatial placement, just as in our design lattice.

In terms of yield, the specific value of the density in the  This work was supported by the David and Lucile Pack-
barrier regions becomes less and less important with increagard Foundation, NSF Grant No. DMR-9813752, and EPRI/
ing DDOF’s, and of vanishing importance in the limit of DoD.
infinite DDOF’s. The key function of barriers is to isolate
unit-density regions. For large DDOF's, the contribution to
density from the increasingly narrow barriers becomes neg-
ligible, so that the barriers could be any density, even zero, as In this appendix we describe why a corner connection
long as their density is beloyy, . Because fluctuations in the between next nearest neighbor unit-density cells makes
barrier density aroung. can induce connectivity, finite lat- propagation of fires between the unit-density cells suffi-
tice simulations exhibit barrier densities that are sufficientlyciently likely that such configurations can be considered
below p. to make connections extremely rare. Thus the roleequivalent to a shared edge. The net effect is to prevent di-
of criticality may be an artifice of taking small DDOF’s, agonal barriers on the design lattice that are commonly ob-
combined with a thermodynamic limit on the underlying lat- served when the configuration is optimized on the underlying
tice. When we take the thermodynamic limit of the underly-lattice. This distinction is readily seen by comparing the
ing lattice, the function describing connectivity becomesHOT configuration obtained using the local incremental al-
completely deterministic, except at, where the probability gorithm in Fig. 1b) with the corresponding result for the
of connection between opposite sides of a barrier depends dacal incremental algorithm applied to the design lattice in
the shape of the barrier, and lies somewhere between zefig. Af), which has only vertical and horizontal barriers. The
and unity[20,21]. The fact that our barriers are tuned ¢o results in this appendix fall short of a rigorous proof, but a
below the critical density is a testament to the fact that wecombination of numerical and analytical results strongly sug-
are optimizing for yield, with no risk of fluctuations, which gest that when the density in the intermediate cepds e,
results in barriers tuned to the maximum density to preventhe chances of a crossing between adjacent edges in the cell
connectivity. Clearly, were we to introduce the possibility ofis 1—O(e*), where 6<y<1. Thus ase approaches zero,
density fluctuations and other stochastic effects, these coifires will spread almost surely between corner connected
figurations would be highly sensitive, and a more conservaunit-density cells as we assume in Sec. Il C, propagation
tive barrier density and barrier width that is more robust torules (3)—(4).
fluctuations would win out. Figure 13 illustrates two examples of corner connections

Additional methods for increasing the number of DDOF's on the design lattice. Figure (&8 represents the case for
may be motivated by specific applications, and could involveM =2, while Fig. 13b) represents the case for some much
additional mechanisms for the spread of cascading failuréarger value ofM. In the latter case, the individual design

(b) . Barrier

|:| Connected
Cluster
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APPENDIX A: CORNER CONNECTIVITY
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cells are not drawn, and the,— e barriers correspond to 1
vertically and horizontally connected lines of cells, one de-
sign cell wide. The case of relatively large unit-density re-
gions, compared to narrow.— e barriers corresponds to
large values oM, where the cost in density of adding a few
morep.— € cells to prevent a corner connection is negligibly
small. However, even in the case of smigllwe see corner
connections prohibited numericalljsee, e.g., Fig. @),
where corner connections are excluded for uniform]hits

In both the small and larg®l cases shown in Fig. 13, the A,
two white unit-density regions share a common corner. If a
spark strikes one of the unit-density regions, what is the
probability the fire spreads through the intermediate region
to the other unit-density cell? If the intermediate cell has unit
density, the corner connected cells areriori part of the
same connected cluster. If the cell has densitgr p.— € we
have to do a little more work to show that this is still almost
surely the case.

The probability of crossing between adjacent sides of the
cell at densities near criticality is well studi¢d0-22. In .
particular, an exact formula for crossing probability between Density p
segments of the boundary of a simply connected compact
region was originally derived in Ref.20] and is called
Cardy’s formula. It follows from this that if the intermediate behaves like an order parameter. Whes p,— e, the diagonal
cell has densityp, or greater, the crossing probability is crossing probability has the leading order focﬁ&;l—Aex.
unity, due to the existence of an infinite cluster. To prevent
top to bottom crossing, the barrier cells must be at or below,, - greater than for largd.

densityp=p.—e. ) o In fact, for the caseM =2, depicted in Fig. 1@), any

_ To determine the general behavior of this diagonal Crossgesity in the intermediate cells leads to a yield that is below
ing probability Py for arbitrary densities, we consider a fi- e yield obtained when all cells are at the critical density. To
nite underlyingNx N lattice, in the limit of largeN. In the  seathis, et the total probability that the unit cells are con-
absence of an infinite clustep€p.), the relevant terms octed be denoted by. From the previous argumentp,
come from paths of finite length. Unlike crossings betweenzzpdc_ P2 andp—1—A2e2X asp—p.—e. In the case of

oppos_ite sides, there are many finite path?’ connecting ".idj L uniformP(1,J), we obtain the following expression for the
cent sides. For example, the shortest path involves the sing eld Y (assuming the intermediate cells are at density
corner-most site, which is occupied with probabilityThus <py):

o)

P4c>p, Vp. The next shortest path involves the three occu-
pied sites that connects the adjacent sides but leaves the cor- Y=1(1-p)2+i+ip. (14)

ner site unoccupied. Including the shortest and second short-

est path gives us a lower boury>p+p>(1—p). While Byt we know that - p<1— p, which implies the following:
this process is far from elegant, it can be extended for an

arbitrary number of finite paths to obtain a lower bound of Y<Y;=3(1-p)*+i+3p. (15)
high accuracy. We find that the bound is a continuous func-

tion of p, increasing monotonically approachipg. As N From this estimate, we note thdlY,/dp>0 on the interval
increases, we find tha®y{p.) approaches unityin agree- of interest G<p<p.. Thus, from this we find thatY,
ment with Cardy’s formulg and obtain a family of curves <Y ma=Yi(p=p)=~0.5668. However, sinceY<Y,,Y

that converge towards the limiting form illustrated in Fig. 14. <Y; 1,.,=~0.5668<p.. Therefore, the yield for the configu-
By inspection, ap=p.— €, approacheg. from the left,P4.  rationin Fig. 13a) is less than the critical density. Thus, such
approaches unity. However, it loses analyticitypat p. (as  a configuration is not even a candidate optimal configuration.

~

a

—
Q

©

FIG. 14. The probability for crossing between adjacent sides as
a function of the densityP4(p) is similar to that ofP,, in that it

is standard for order parameter8y inspection, atp=p, For largeM [Fig. 13b)], suppose that the connected clus-
—¢€, P4y=1—A€X to leading order wherd is some constant tersR; andR, are composed df; andl, unit design cells,
and 0<y<1. respectively. Without loss of generality, let us assume that

Finally, we note that decreasing the density in the barriet;=1,. Consider the contributions to the yield that arise due
cells further(which decreases the probability of a diagonalto the presence of a corner connection between redgians
connection is not favored in calculations that optimize yield. and R,, and denote it byY.. (cc=corner connected We
Instead, higher yields are obtained when the barriers are atant to then compar¥ to the yieldY . (ncc=no corner
densityp.— €, and corner connections are treated as equivaeonnection obtained if we change a single unit-density cell
lent to edge connections. The worst case scenario is for smah the corner ofR;, to prevent a corner connection. All we
M, because the cost in density of additional barrier cells ishen need to do is show th¥f,..— Y..>0. ForY.. we obtain
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21,1,

(I1+15)?
|l+|2+ W(l—p 2_

_Mz_) 19

Ve~ 2

while for Y .. we obtain

(13- 1)%+13

M 2 (17)

l1+1—(1=pc)—

Ynee=

1
[YH
Thus combining Eqs(16) and(17) we obtain

1 21415 )
Yncc_ch:VZT —(1=po)+ W[l_(l_p) ]

|

In the largeM limit (see Sec. IVBI,,l1,~M*3 Conse-
quently, Ypee— Yee>0 since I41,/M?~M?3 and clearly
dominates Eq(18). In this case as well, we observe that

21,1
M2

(18)
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In the asymptotic limit, wherey is continuous, the optimal
yield satisfies

av_ 0 20
ay o (20)

Equation(20) applied to Eq(19) yields
m{m3+2m—-M?(1-p.)]=0, (21)

where the solutiorm=0 corresponds to a minimum yield

(for M>0) at the critical density. In the limit of largkl, the
linear term inm in the parenthesis can be ignored, and we
recover Eqs(10), from which it is straightforward to deduce
Egs.(11)—(13).

We can also obtain these results by using a scaling argu-

configurations with corner connections do not produce thg,ant. Assuming

highest yields and thus are not optimal configurations.

APPENDIX B: ASYMPTOTIC CALCULATION OF THE
OPTIMAL REGION SIZE FOR A UNIFORM
DISTRIBUTION OF SPARKS

In this appendix we sketch the key algebraic steps in the

calculation of the optimal size? of the unit-density regions
for M? DDOF's. In particular, we optimize Eq9) as a func-
tion of mwith fixed M, to obtain the optimaiin Eq. (10) to
leading order inM, asM — o,

Let y=m/M. In the limit M—«, y approaches a con-
tinuous variable, reflecting the fact that the problem of pack
ing the optimal regions into the design lattice, which con-
strains our solution for finiteM, becomes a negligible
problem in the asymptotic limit.

Rewriting Eq.(9) in terms ofy, we obtain

5+

m=AM? (22)
to lowest order inM 1, we obtain the yield
Y=1-2A"Y1—p )M °—A2M2°2, (23

Assuming this scaling fom holds asymptotically irM, we
seek a solution fors that sustains the maximum for in-

creasing values d¥l. Note that the exponerdienters the last
two terms on the left-hand side with opposite sign. The scal-
ing of these two terms balances whér 2, which corre-
sponds to the optimal solution. To see this, consier;.
While the second term is relatively smaller, the exponent in
the final term — 2> — £ is larger, leading to a more rapid
decay in yield. Similarly, if6<3 the second to last term
dominates, and produces smaller yields. Since the optimal
maximizes yield, we concludé= 5. Additionally, we can fix

A by dY/9A=0 and consequently recover E¢30)—(13).
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