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Design degrees of freedom and mechanisms for complexity
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We develop a discrete spectrum of percolation forest fire models characterized by increasingdesign degrees
of freedom~DDOF’s!. The DDOF’s are tuned to optimize the yield of trees after a single spark. In the limit of
a single DDOF, the model is tuned to the critical density. Additional DDOF’s allow for increasingly refined
spatial patterns, associated with the cellular structures seen in highly optimized tolerance~HOT!. The spectrum
of models provides a clear illustration of the contrast between criticality and HOT, as well as a concrete
quantitative example of how a sequence of robustness tradeoffs naturally arises when increasingly complex
systems are developed through additional layers of design. Such tradeoffs are familiar in engineering and
biology and are a central aspect of the complex systems that can be characterized as HOT.
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I. INTRODUCTION

Complexity and design are common concepts that
scribe many aspects of our everyday experiences, yet
concepts have generated much controversy in the scien
literature. Design is typically associated with a planned
deliberate selection based on performance goals, as in
technology and engineering@1#. However, design also play
an important role in management and policy for both soc
and natural systems. Evolution by natural selection can
thought of as nature’s mechanism for design, whereby h
fitness organisms are selected over poor performers, wit
requiring the intervention of a deliberate designer@2#. While
it is widely recognized that chance, evolution, and design
play roles in complex technological, social, and biologic
systems, their relative roles remain controversial. Even
engineering systems, where design is deliberate and pe
mance goals are relatively straightforward to quantify, it
difficult to assess the extent to which designs are close
optimal, since even the simplest mathematical descripti
are often computationally intractable. A further challenge
to describe the role and extent of design in a way that is c
and systematic, yet does not rely on detailed knowledge
the design process.

The relationship between design and complexity has s
lar ambiguities and controversies. One popular notion
complexity involves systems that exhibit variable featu
spanning a range of scales in time and space. Broadly sp
ing, there have been two extreme theoretical points of de
ture from this notion of complexity, which are differentiate
in terms of their stance regarding the role of design. At o
extreme is the point of view that complexity ‘‘emerges’’
systems that are otherwise internally homogeneous
simple @3#. This view underlies the theory of self-organize
criticality ~SOC! @4–6#, and the edge of chaos@7# and sug-
gests that large-scale structure arises naturally and at no
parent cost through collective fluctuations in systems w
generic interactions between individual agents. In this s
nario structure is associated with bifurcation points and c
1063-651X/2002/66~1!/016108~18!/$20.00 66 0161
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cal phase transitions. ‘‘Self-organized’’ describes syste
that are dynamically attracted to such transition states.

In the alternative point of view, complexity is associat
with intricately designed or highly evolved systems. Th
notion of complexity is familiar in biology and engineering
and plays an important role in the extensive literature dev
oped in the artificial life~ALife ! community. ALife studies
how increasingly complex computer organisms evo
through competition@8#. More recently, a theoretical frame
work referred to as highly optimized tolerance~HOT! was
introduced@9–11#, which emphasizes the role of robustne
to uncertainties in the environment as a driving force towa
increasing complexity in biological evolution and enginee
ing design. It is the HOT framework on which this paper
based.

The suggestion that robust design is the primary mec
nism for complexity is motivated by the observation that f
most biological and technological systems, the vast majo
of components are present for robustness rather than for
sic functionality of the organism or machine@12#. Designed
systems are typically internally extremely heterogeneous
complex, and this complexity is introduced to create simp
reliable, robust external behavior, despite uncertainty in co
ponent parts and in the environment. In designed syste
internal complexity is used to minimize external complexi
This deviates from emergent complexity, which emphasi
how internally simple systems can yield externally comp
behavior. Nonetheless, due to the broad spectrum of envi
mental uncertainties, and the robustness and performa
tradeoffs that are inherent in evolution and design, syste
with ‘‘designed complexity’’ exhibit external structure an
failure modes over a broad range of scales, albeit at hig
densities and throughput than those associated with
‘‘emergent’’ systems. As we have described elsewhere
more detail@9–13#, emergent and designed complexity a
extremely different, and we have argued that the latte
much more relevant to biological, social, and technologi
systems where design and evolution amidst environme
uncertainty plays a role.
©2002 The American Physical Society08-1
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The aim of this paper is to determine how the charac
istics of designed systems change as the resolution of
design is varied. Two questions then are central to this lin
research. Can systems be classified in terms of their rela
complexity? Is it possible to quantify the amount of desig
For real systems, this defines an inverse problem. The
would be to determine the extent to which a system devia
from a generic, random configuration, or some other n
hypothesis, by identifying a series of performance goals~in-
equalities! that measure these deviations, along with tuna
parameters, which can be used to narrow the set of acc
able configurations from the generic, random starting po
towards selected states that satisfy the performance g
However, we are not yet at a point where we can solve
inverse problem for real systems. Instead, we propose a
ward design problem in the context of a lattice model a
introduce a single, simple framework for optimization
yield ~the performance goal! with respect to a specified num
ber ofdesign degrees of freedom~DDOF’s!, which represent
the tunable parameters. Varying the number of DDOF’s
lows us to interpolate between systems with minimal des
and those that are highly designed.

We investigate the consequences of increasing DDOF
the context of the percolation forest fire model@14#, which is
a variant of site percolation@15# on the two-dimensiona
square lattice. A spark impacts a standard percolation c
figuration on an individual site, and burns the associated c
nected cluster. This model has been studied previously in
context of SOC~Refs.@14# and@16#! and HOT@9–13,17,18#.
By creating a spectrum of models that interpolates betw
minimal and maximal design limits we can contrast the f
tures associated with criticality and HOT, and the tradeo
that lead to incremental shifts from structure that is ass
ated with fluctuations and emergence to that associated
deliberate, optimized layouts. Most importantly, we hope
create a model system in which design and necessity h
clear meanings, albeit severely abstracted from their mea
in engineering and biology. For our model system, the
tions of emergence, complexity, and order have natural in
pretations, which will allow us to clarify some of the pote
tial ambiguities.

For the full spectrum of models, we assume that the
tices are chosen to maximize yield in an external envir
ment. The measure of yield, and the external environm
remain fixed as we vary the number of tunable paramet
When the DDOF’s are optimized for the yield of ‘‘trees
after a single ‘‘spark,’’ we obtain random configurations
the critical density in the limit of a single DDOF, and a ful
optimized HOT configuration, consisting of compact co
nected clusters separated by well defined linear firebreak
the limit of infinite DDOF’s. Interestingly, in our formulation
the intermediate cases do not exhibit a gradual crossove
the sense of, say, a smooth variation of the density, o
gradual shift in the power law or the typical size or shape
events. Instead, the design variables, which correspon
local densities in different regions in space, always conve
to either critical or unit density. This occurs even when t
number of DDOF’s is as low as two. As the DDOF’s in
crease, different portions of the lattice shift from a dens
01610
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that approaches the critical density to unit density. In
limit of large numbers of DDOF’s near critical regions for
increasingly narrow linear barriers that bound compact u
density regions characteristic of HOT.

Studying the system as a function of the number
DDOF’s provides a concrete, quantitative measure of
structured sensitivity that is a central feature of therobust,
yet fragile HOT systems. As the number of DDOF’s in
creases, the system becomes increasingly robust to com
perturbations: the average yield increases, as does the a
of the layout to resolve features in the distribution of spar
The system also becomes increasingly fragile to rare eve
changes in the distribution of sparks, and flaws in the des
This occurs because the increasing density puts more o
system at risk for potential failure, and narrower barrie
imply increasing sensitivity to design flaws.

The remainder of this paper is organized as follows.
Sec. II we describe the percolation forest fire model, a
introduce our scheme for increasing the number of des
degrees of freedom.

In Sec. III we describe a sequence of numerical results
increasing DDOF’s. While optimization of a system with ju
a few design parameters can be computed brute force,
strained optimizations are required to extend our results
large numbers of DDOF’s.

In Sec. IV we describe the results of analytical calcu
tions for a spatially uniform distribution of sparks. HOT do
not lead to power laws in this case. Instead, with large nu
bers of DDOF’s the system breaks up into equal size H
regions of unit density, separated by linear barriers approa
ing the critical density.

We conclude in Sec. V with a summary of our results. W
also discuss alternative schemes of varying the numbe
DDOF’s, and the role of DDOF’s in more realistic setting

II. THE PERCOLATION FOREST FIRE MODEL WITH
DESIGN DEGREES OF FREEDOM

The percolation forest fire model consists of a tw
dimensionalN3N lattice. Each site is either occupied by
tree or is vacant, and each contiguous set of nearest neig
occupied sites defines a connected cluster. The forest is
ject to external perturbations, represented by sparks. Wh
spark hits a vacant site on the lattice nothing happens. W
a spark hits an occupied site it burns all the trees in
connected cluster associated with the site.

The impact site~i,j! for the spark is drawn from a prob
ability distribution P( i , j ). If P( i , j ) is uniform, then each
site is equally likely to be hit. IfP( i , j )5d( i 2 i 0)d( j 2 j 0)
then site (i 0 , j 0) is hit with absolute certainty. All other dis
tributions lie between these two extremes, and represen
more realistic case of variable risk, where ignitions are co
mon in some regions and rare in others.

In random percolation@15#, the state of the system is fully
characterized by the densityr. Individual sites are indepen
dently occupied with probabilityr, and vacant with probabil-
ity 12r. Properties of the system are determined by
semble averages in which all configurations at densityr are
taken to be equally likely. In the thermodynamic limit tran
8-2
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lational invariance of the ensemble renders the choice
P( i , j ) completely irrelevant, and the density isa priori the
only tunable parameter. However, when additional tuna
parameters~defined below! allow for more detailed resolu
tion of the spatial layout of the lattice, then the form
P( i , j ) plays a key role in determining the optimal state.

We define yieldY to be the number of trees remainin
after a single spark,

Y5r2^ l &. ~1!

Herer is the density before the spark and^l& is the average
loss due to the fire, computed over the distribution of spa
P( i , j ) as well as the configurations in the ensemble.
optimize yield as a function of the tunable parameters, gi
a distribution of sparksP( i , j ).

The number of DDOF’s is a count of the parameters t
are deliberately tuned to select the configuration or ensem
of configurations that define the state of the system. For
dom percolation, by construction there is only one DDOF
the densityr. Oncer is set the state of the system is defin
by the ensemble of all possible configurations at densityr. In
the opposite extreme, if we specifically choose whether e
site individually is occupied or vacant on anN3N lattice,
then we haveN2 DDOF’s, which diverges in the limitN
→`. For large lattices, computing the globally optimal co
figuration with respect toN2 DDOF’s rapidly becomes nu
merically intractable, requiring consideration of 2N2

candi-
date lattices in order to select the best configurati
Constraints may be imposed on the optimization to rest
either the number of DDOF’s, or the search space for opti
configurations, or both.

Previously a variety of constrained optimization schem
were considered in the context of HOT, which preserveN2

DDOF’s on anN3N lattice, but restrict the search for opt
mal configurations. One example, which we modify for fin
DDOF’s in Sec. III D, corresponds to a local incremen
algorithm for increasing the density. This algorithm consi
of a local optimization in configuration space. Sites are
cupied one at a time, always choosing the next site to occ
in order to maximize yield for the incremental change
density @10#. The result is a sequence of unique configu
tions @when P( i , j ) is chosen to avoid degeneracies# of in-
creasing density, which trace over the full intervalr
P@0,1#. In the case of degeneracies~i.e., two choices of the
next site to occupy produce the same yield!, a site is selected
randomly from the candidates, and the process continues
til the lattice is fully occupied. Collecting the complete set
configurations that arises when the random choices ass
ated with degeneracies are taken into account results i
ensemble of possible configurations at each density. Wit
without degeneracies, configurations selected by the loca
cremental algorithm correspond to a set of measure zer
the space of possible configurations at a given density.
ensemble defines a yield curve,Y(r), which has a maximum
at somer5rmax. Beyond this value there is a sharp drop
yield. In the thermodynamic limit,rmax approaches unity
Figure 1 contrasts an example of the maximum yield po
obtained by this algorithm with a typical random configur
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tion at the critical density for a 64364 lattice. For a more
complete description of this model see Ref.@10#.

In the local incremental algorithm, there are of orderN2

DDOF’s ~since sites are individually assigned to be occup
or vacant!, but the number of configurations that a
searched through to locate a maximum are far less (,N4)
than the 2N

2
required for a global search. In spite of the fa

that the local incremental algorithm samples fewer confi
rations, both the brute force global optimization and the lo
incremental algorithm lead to highly designed systems, w
many common properties. Both lead to power law distrib
tions of fire sizes for a broad class ofP( i , j ), densities, and
yields that approach unity in the limit of large system siz
and compact connected clusters of trees separated by l
barriers. In both cases the number of design degrees of f
dom diverges asN→`.

Finally, we consider intermediate numbers of DDOF
There are many ways to interpolate between one and infi
DDOF’s. We consider a particular choice below, which
convenient and tractable. We believe the basic trends
duced by our scheme are characteristic of the general p
lem of incrementing DDOF’s in percolation~this is discussed
in more detail in the conclusion!, although in the future we
plan to explore alternatives, especially those relevant to s
cific applications.

Our scheme is based on subdividing theN3N lattice into
equal square cells~see Fig. 2!. This defines anM3M lattice,
with each cell containingn25(N/M )2 sites. Individual cells
are characterized by a densityr IJ , where~I, J! defines the
cell coordinate on theM3M design lattice.

The~I, J! sites are a coarse graining of the~i, j! coordinate
system describing the underlying lattice of vacant and oc
pied sites. Our scheme is loosely analogous to an inver
of the traditional real space renormalization employed in s
tistical mechanics to analyze critical phenomena@19#. How-
ever, rather than starting with a configuration on the und
lying lattice, and rescaling to obtain an equivalent density
the coarse grained version ultimately culminating in a fix
point, here we individually prescribe~and eventually opti-
mize! a density for each design cell of theM3M lattice,
which determines the ensemble of allowed configurations

FIG. 1. Sample configurations for the~a! critical and~b! HOT
percolation forest fire models on a 64364 lattice. White sites are
occupied, and black sites are vacant. The critical configuration
resents a sample from the ensemble of randomly generated con
rations at the critical densityrc'0.59. The HOT configuration is
obtained for the ~constrained! local, incremental optimization
scheme. HOT configurations have much higher densities and
stylized for the distribution of sparksP( i , j ) given in Eq.~2!, which
is sharply peaked in the upper left corner of the lattice, where
vacancies are most concentrated, and form linear fire breaks.
8-3
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DAVID REYNOLDS, J. M. CARLSON, AND JOHN DOYLE PHYSICAL REVIEW E66, 016108 ~2002!
the portion of the underlying lattice enclosed in the ce
When r IJ takes a particular value in a cell on theM3M
design lattice, then all microscopic configurations associa
with the n2 primitive sites on the underlyingN3N lattice
described by that density are equally likely in the cell.
other words, sites on the microscopic lattice within the c
are independently occupied with probabilityr IJ , and prop-
erties associated with the cell at that density are defined
the ensemble average, just as in random percolation, bu
stricted to the subspace of the underlying lattice that is
fined by the~I, J! cell. It is possible to takeN→`, yet keep
M finite. In that case, the individual cells on the design latt
are described by the thermodynamic limit of standard r
dom percolation at the prescribed cell density.

III. NUMERICAL RESULTS

In this section we present the results of a sequence
numerical computations, which illustrate the effects of
creasing design degrees of freedom. We begin with b
force calculations on finite lattices and limited DDOF’s. O
observations lead to insights that simplify calculations in
limit of an infinite underlying system. For small numbers
DDOF’s we compute globally optimal solutions. For larg
numbers of DDOF’s we introduce a modified version of t
local incremental algorithm on the design lattice.

For an M3M design lattice superimposed on anN3N
underlying lattice, the sequence of computations is sum
rized as follows:

~A! M51. We begin by reviewing the case of a sing
DDOF, where optimization of the yield leads to criticality.

~B! N finite, M small. This corresponds to the case of
finite underlying lattice and just a few DDOF’s. In this ca
we compute the optimal subregion densities of theM3M
lattice by averaging over random sample configurations
different sublattice densities. Interestingly, this calculat
shows that asN gets large, the subregion densities conve

FIG. 2. Definition of theM3M design lattice~here M52!,
which is superimposed on the underlyingN3N percolation lattice
of vacant and occupied sites. Each cell in the design lattice is c
acterized by a densityr IJ and all configurations at densityr IJ are
equally likely in the cell. The set of$r IJ% with I, JP@1,M # define
the M2 DDOF’s.
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to either unit density or a density that approaches the crit
densityrc . ~The ‘‘critical’’ regions are bounded away from
rc , for technical reasons we will discuss this later.!

~C! N→`, M small. We use the fact thatr IJ converges to
rc2e ~e infinitesimal! or unity to simplify our search of the
state space in the thermodynamic limit. This allows bru
force calculation of the globally optimal configuration fo
M<5 on anM3M coarse grained lattice. We begin to o
serve the design lattice breaking up into compact domain
unit density, separated by uncrossable barriers of densitrc
2e.

~D! N→`, M large. To extend our results to larger desig
lattices, we modify the local incremental algorithm cons
ered previously in the context of finite lattices, to the case
the infinite underlying lattice, but a finite design lattice. He
cellular patterns similar to those previously associated w
HOT clearly emerge on the design lattice.

We have verified that the qualitative results presented h
hold for a range of spark distributions, including Gaussi
exponential, and Cauchy. However, for consistency in t
paper, unless otherwise specified, we present our nume
results for the same exponential distribution, scaled in
manner that allows us to directly compare results for diff
entM andN. Specifically, we define the coordinate system
that the origin lies in the upper left-hand corner of the lattic
and thatx increases moving horizontally towards the righ
andy increases moving vertically downward from that poin
We scale the discrete underlying lattice into the unit squa
so thatx5 i /N, i 51, . . .N, and y5 j /N, j 51, . . .N, and
take

P~x,y!5A exp$2@~x/hx!1~y/hy!#%, ~2!

wherehx andhy are characteristic lengths for the decay
the distribution along thex andy axes, respectively. We tak
hx5 1

10 , andhy5 1
4 , deliberately breaking the symmetry o

the distribution to avoid degeneracies. The constantA is de-
termined by normalization. To compute the probability of
spark hitting a particular site~i, j! on the discrete lattice, we
integrate the continuous distribution over the square co
sponding to the site,

P~ i , j !5E
~ j 21!/N

j /N E
~ i 21!/N

i /N

P~x,y!dx dy. ~3!

To compute the total probability of hitting a cell~I, J! in the
design lattice, we compute the corresponding integral o
the area of the design cell,

P~ I ,J!5E
~J21!/M

J/M E
~ I 21!/M

I /M

P~x,y!dx dy. ~4!

Specific designed configurations depend on the details
P(x,y) up to the resolution of theM3M design grid.

A. Criticality—the optimal solution for a single DDOF

We begin with a single design degree of freedom,M
51. The state of the system is characterized by the densir,

r-
8-4
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FIG. 3. The onset of percolation and th
maximum yield point coincide for a single desig
degree of freedom.~a! illustrates the percolation
probability P`(r) that is simply related to yield
Y5r2P`(r)2 illustrated in~b!.
-
s
riz

e
a

ity
a

wa
c

ta
o

n
o
g

m
th
lo
e
in
e

-
e
d
s-
gh

at
es

es
o,

ity
e
bi

is
e-

ny
The
har-

ster

park
the

ty

rms

b-
ty
n-
or-
in

-
ize
. Of
on-
ity.
mi-

pic
a
l

ys-
ds

ob-
and all configurations of densityr are weighted equally. In
the limit of largeN, the choice ofP(x,y) is irrelevant be-
cause the ensemble isa priori translation invariant. The re
sults forM51 follow directly from known numerical result
for site percolation on a square lattice, which we summa
below.

The model exhibits a continuous phase transition at d
sity rc'0.592, which is associated with the emergence of
infinite connected cluster. In the limitN→`, for r,rc there
is no infinite cluster. Forr.rc an infinite cluster exists
somewhere on the lattice with probability one. Atr5rc the
probability of an infinite cluster lies between zero and un
and depends on the shape of the lattice. For a square-sh
lattice the probability of crossing between opposite sides
derived using conformal field theory, which yields an exa
probability of 1/2@20,21#. It was later confirmed numerically
@22#. More general expressions are also derived for rec
gular regions, where the crossing probability is a function
the aspect ratio.

At low densities, the lattice is sparsely populated, a
breaks up into isolated clusters of a range of sizes, cutting
sharply at a characteristic size, defining the correlation len
j. Clusters of size greater thanj are extremely rare. Below
the critical densityj is finite and independent of the syste
size as long as the system is large enough. This implies
at low densities there is on average zero macroscopic
associated with a fire ignited by a single spark. In oth
words, the average number of sites lost in a fire rema
bounded, of orderj2 or less, and does not scale with th
number of occupied sitesrN2. While some rare configura
tions do contain macroscopic connected clusters at low d
sities ~e.g., configurations in which all sites are connecte!,
they are sufficiently unlikely within the ensemble of all po
sible layouts that they do not contribute any statistical wei
to the loss in the thermodynamic limit.

Approaching the critical densityj diverges, j;(rc
2r)2n, with n54/3. At rc the system exhibits clusters th
extend to the size of the system. At criticality, the larg
clusters are fractal and the number of sites scales asNdf ,
wheredf591/48,2. Since the number of sites overall scal
asrcN

2, even atrc the macroscopic loss in density is zer
although there is a nonzero probability of crossing.

At densities greater than or equal to the critical dens
there is an infinite cluster and the probability that any giv
site is on the infinite cluster defines the percolation proba
ity P`(r), illustrated schematically in Fig. 3~a!. Below rc ,
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P`(r<rc)50 since there is no infinite cluster. Atrc ,
P`(r<rc)50 because even if an infinite cluster exists, it
fractal. At density 1, the system is fully occupied, corr
sponding to a single systemwide cluster, soP`(1)51. As the
density decreases from unity back towardsrc , there is a
single macroscopic percolation cluster along with ma
separate isolated islands that are microscopic in size.
microscopic islands become exponentially rare above a c
acteristic sizej8;(r2rc)

2n8, with n85n5 4
3 ~analogous to

the microscopic islands described above for densitiesr,rc!.
As the density decreases, the macroscopic percolation clu
becomes increasingly sparse, and the characteristic sizej8 of
the isolated islands increases. However, the only time a s
leads to a macroscopic decrease in the density is when
percolation cluster is hit. This occurs with probabili
P`(r).

Consequently, the yield can be simply expressed in te
of the percolation probability

Y5P`~r!@r2P`~r!#1@12P`~r!#r5r2P`~r!2.
~5!

In the first equality, the first term corresponds to the pro
ability of hitting the infinite cluster, in which case the densi
that remains after the hit is the initial density minus the de
sity associated with the infinite cluster. The second term c
responds to the probability of missing the infinite cluster,
which case the full density is recovered. Forr<rc , P`(r)
50, and Y5r is monotonically increasing inr @see Fig.
3~b!#. For r.rc , Y(r) is a monotonically decreasing func
tion of r. While the density is increasing, the increasing s
of the infinite cluster leads to increasing average losses
course, not all configurations have large losses. HOT c
figurations are designed for small losses up to unit dens
However, typical configurations have large losses, and do
nate the random ensemble.

Therefore, forM51 the critical densityrc maximizes
yield. At rc , P`(rc)50. The infinite cluster~if it exists! is a
system spanning only sparse fractal object of microsco
density. Additionally, the distribution of cluster sizes is
power law, reflecting the fractal self-similarity of the critica
state, with a finite-size scaling cutoff determined by the s
tem size. The power law in the cluster size distribution lea
to a power law in the fire size distribution~the fire size dis-
tribution is based on the occurrence of fires, where the pr
8-5
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ability of hitting a cluster is proportional to its area! which
written cumulatively takes the form

F~ l !; l 2ag„j~r!/N…. ~6!

HereF( l ) is the cumulative probability of a fire that resul
in the loss of greater than or equal tol sites. For site perco
lation on a two-dimensional square lattice the exponena
'0.05. Note that this distribution is very flat, and diffe
from the noncumulative density describing the cluster s
distribution by roughly two in the exponent~going from
clusters to fires increments the exponent2a by roughly one,
and going from noncumulative to cumulative distributio
also increments the exponent by one!. The functiong(j/N)
determines the finite-size scaling cutoff. AsN→` this im-
plies that the loss in density of the characteristic large fi
becomes vanishingly small, scaling asNdf /N2.

In summary, maximizing yieldY(r) as a function of den-
sity for a single DDOF leads tor5rc , and the fire charac
teristics are the common features associated with system
a critical phase transition. At this density the system on
erage sustains no net loss. Nonetheless, the distributio
fire sizes extends up to a size the scales with the size o
system. The fires are sparse, and fractal in shape, and
characteristics are uncorrelated with the spatial distribu
of ignitions.

While optimization for yield with a single DDOF leads t
the critical state, it is important to note that the argume
that lead to criticality here and in SOC are slightly differe
SOC is based on an implicit dynamical argument, which b
ances the infinitesimal rate of ignitions and slow but stea
growth of trees. SOC seeks a fixed point that is a statistic
steady state of the dynamics in a system that exhibits a s
ration of times scales. Thus SOC involves tuning rates, w
criticality involves tuning densities. While in some case
tuning rates may seem more appealing, both involve
same number of DDOF’s. Even in this case some myste
remain. The SOC forest fire model does not correspond
critical system in the usual sense of equilibrium statisti
mechanics, and exhibits scaling properties different than
dinary percolation@14,23#. In contrast, our model explicitly
invokes optimization, so that deliberate feedback or evo
tionary selection pressure is the underlying mechanism
selecting the state, even in the limit of a single tunable
rameter. While yield~i.e., mean productivity! is a natural
candidate for fitness, alternative optimization functio
based, e.g., on some linear combination of the variance
loss could be defined in a manner that may lead to opti
behavior away from criticality.

B. Explicit optimization on finite lattices with few DDOF’s

Next we consider cases withM.1, but small enough to
allow explicit computation of the optimal solution for finit
lattices. Specifically, we compute yield as a function of t
M2 design cell densitiesr IJ by generating a random sam
pling of configurations in which we independently vary t
r IJ . From this we determine the optimal yield configurati
as a function of theM2 cell densities. For small enoughM
and N we can compute enough random configurations
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obtain smooth curves and convincingly locate the maximu
We subsequently increaseN for fixed M in order to extrapo-
late our results to the thermodynamic limit of the underlyi
lattice, while keeping the number of DDOF’s fixed.

Something interesting happens even for the smallest n
ber of design cells. AsN becomes large, each of the densiti
r IJ either converges rapidly to unity or more gradually t
wardsrc . This was seen previously in the mean field lim
@18#. The results presented here provide evidence that sim
results hold on finite-dimensional lattices.

Below we illustrate numerical results for the caseM52,
which divides the underlying lattice into fourN/23N/2 de-
sign cells. Similar results are obtained for even smaller nu
bers of DDOF’s, e.g., when theN3N lattice is divided into
two N/23N design cells~we will return to this case afte
discussingM52!. Here we use the first case that preserv
symmetric design cells for our most detailed discussion
simplicity and consistency of notation and figures through
the paper.

We considered a sequence of lattice sizesN516, 32, 64,
128 of the underlying lattice. Each lattice is divided into fo
equal cells, defining a 232 square design lattice. We com
pute the yield as a function of the four independent densi
Y(r11,r12,r21,r22), by averaging over 100 randomly gen
erated configurations of each density in each design cell

Our numerical algorithm for generating these configu
tions is as follows. For each of the 100 members of
ensemble we use to compute each average, we assign a
dom numberz( i , j ) in the intervalz( i , j )P@0,1# to each site
~i,j! of the underlying lattice. The random configuration
design cell~I,J! corresponding to densityr IJ is obtained by
generating the configuration in the design cell where sites
occupied whenz( i , j )<r IJ and vacant whenz( i , j ).r IJ .
We accumulate statistics for yield as a function of the fo
design parameters by independently incrementing the de
ties in small steps and then averaging over the 100 diffe
realizations of the random numbersz( i , j ).

In Fig. 4 for N564 we illustrate cross sections o
Y expressed individually as a function of each the fo
densities r IJ along slices of the five-dimensional spa
Y(r11,r12,r21,r22), which pass through the absolute max
mum value ofY @e.g., we plotY(r11) for fixed values ofr12,
r21, and r22 coinciding with the maximum#. Note that for
each plot, the maximum ofY(r IJ) occurs for r IJ'rc or
r IJ51. In this particular case, the maximum value ofY is
Y50.7493 and is obtained forr1150.4515,r125r215r22
51.

The unit density maxima atr IJ51 are associated with
increasing values ofY(r IJ) at the endpoint of the interva
defining possible values, and are well defined even for fin
N because the discrete underlying lattice plays a minor r
when the cell is fully occupied. In contrast, the position
the maximum that occurs in the upper left cell for the dens
r11 near rc does depend on the system size. In Fig. 5
illustrate the results of increasing the size of the underly
lattice, which illustrates that the position of the maximu
~i.e., the value ofr11 where]Y/]r1150! is converging to-
wards the critical densityrc .
8-6
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Sample solutions obtained for different distributions
sparks are illustrated in Fig. 6. The optimal solutions~top
row! and the corresponding spark distributionsP(x,y) ~bot-
tom row! are shown. Figure 6~a! corresponds to the asym
metric exponential in Eq.~2!. Here the optimal solution cor
responds to the upper left cell at the critical density, and

FIG. 4. Cross sections of the yield through the maximum plot
as a function of one of the four design cell densitie
Y(r11,r12,r21,r22), the other three remaining fixed. The resu
are illustrated forN564.
01610
f

e

other three cells are at unit density, as described in Fig
Figure 6~b! represents another case in whichP(x,y) is ex-
tremely sharply peaked. In this case, the distribution
Gaussian, and we obtain a solution of the same form as
case~a!. As the sharpness ofP(x,y) is reduced, other solu
tions are observed. Figure 6~c! represents a case where th
distribution is exponential iny and uniform inx, and the
solution corresponds to near critical density regions in
upper half of the lattice, and unit density regions at the b

d
:

FIG. 6. Sample optimal configurations of the design lattice
four different P(x,y). Black cells correspond to density nearrc ,
while white cells are at unit density. Below the configurations
illustrate the corresponding spark distributions in gray scale, ra
ing from higher values~black! to lower values~white!. The distri-
butions are~a! the asymmetric exponential in Eq.~2!, ~b! a Gauss-
ian, ~c! an exponential that depends only ony, and decays moving
downward in the lattice from the peak value taken at the top,
~d! a uniform distribution.
lts

lts

in
to
s-
FIG. 5. Lattice size dependence of the resu
presented in Fig. 4 illustrates that the value ofr11

at the maximum ofY(r11,r12,r21,r22) con-
verges torc as the system size increases. Resu
are shown for lattice sizesN516,32,64,128, and
illustrate that the densityr11 that maximizesY is
converging towards the critical densityrc

'0.592 with increasing system size. The ma
figure illustrates the cross sections analogous
those presented in Fig. 4, but with increasing sy
tem sizes, and the inset illustrates the value ofr11

at the maximum ofY as a function of inverse
system size.
8-7
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tom. Figure 6~d! represents the case of a uniform distributi
of hits. Here the solution corresponds to a single unit den
region, with the remainder of the lattice near the densityrc .
Because the distribution is uniform, the placement of the u
density cell is arbitrary, leading to four degenerate optim
solutions. In general, in the limitN→` the optimal solution
for the design lattice can only depend on the distribution
sparksP(x,y) up to the resolution of the design lattice. Th
follows from the fact that each cell is described by the tra
lation invariant ensemble of configurations characteriz
only by the density, which washes out all structures ass
ated withP(x,y) beyond the cumulative probabilityP(I ,J)
@Eq. ~4!# that the region is hit. This essentially trivial result
consistent with our finite lattice simulations, where the ed
effects associated with finite grids on the underlying latti
which are relatively small to begin with, become increa
ingly insignificant in the limit of largeN.

Similar results are also obtained for both lesser a
greater resolutionM of the design lattice. At the cost of in
troducing asymmetric cells, we can reduce the numbe
DDOF’s to two. In this case we again find that the cell de
sities converge torc or unity. For the case of a uniform
distribution of sparksP(x,y) the optimal solution corre-
sponds to the critical density in each cell:r15r25rc . This
solution is maintained until a point where there is sufficie
asymmetry inP(x,y). At this point the cell that is less likely
to be hit, say cell two, has optimal density 1, while the mo
likely cell, cell one, trivially remains at the critical densit
The amount of asymmetry required is a function of the cr
cal densityrc , and is thus dependent on the underlying p
colation model. LettingR(1)5P(1,1)[p be the cumulative
probability of hitting region 1, andR(2)5P(1,2)[12p, in
the limit of large system sizes we can compute the yield a
function of the second design cell density,Y(rc ,r2),

Y~rc ,r2!5rc1pr21~12p!@r22P`~r2!#. ~7!

When the asymmetry is such thatp.rc , then the optimal
solution for cell two shifts fromrc to unit density.

For larger values ofM our computations are limited b
the numerical intensity of computing the optimal value ofY
as a function ofM2 design parameters. We have gone as h
as M53, which requires a reduction in the number of co
figurations we randomly sample to compute the average
more efficient method of computing optimal solutions beg
with the assumptionN5` and makes use of the observatio
that the cell densities converge towardsrc or 1. This is pre-
sented in the next two sections.

C. Global optimization for an infinite underlying lattice and
few DDOF’s

In this section, we obtain globally optimal solutions b
brute force optimization of theM3M design lattice layout,
subject to the assumption that individual cells are near c
cality or at unit density. Both criticality and unit density co
incide with fixed points of the renormalization group in th
standard statistical mechanical formulation of percolati
However, properties of these two fixed points are extrem
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different. Indeed, the special loss and crossing properties
sociated with cell densities approachingrc and at unity,
which hold~following standard results in percolation theor!
in the limit N→` simplify our subsequent calculations eno
mously. The description of cells at unit density is trivial: if
spark strikes the cell all sites are lost, as are all sites in
other unit-density cell that is connected to the sparked cel
a contiguous path of nearest neighbor unit-density ce
When a spark strikes within a cell at or below densityrc ,
there is no macroscopic loss of density. The probability t
fire will propagate into a neighboring cell from a hit in
critical cell is also zero, because the infinite cluster~if it
exists! is sufficiently sparse that the chance of hitting it a
negligible.

The only subtleties arise when considering the possibi
of fires propagating from one unit-density cell to anoth
through a region of density at or nearrc . First consider a
spark that ignites a unit-density cell, which is separated fr
another unit-density cell by an intermediate cell that must
crossed from top to bottom or left to right to obtain a co
nection. If the intermediate cell has density greater thanrc ,
the crossing probability is unity. If the intermediate cell h
density exactlyrc , there is a finite probability of crossing
which depends on the shape of the intermediate region
previously stated, if the contiguous intermediaterc region is
square, the crossing probability is exactly1

2 @20,21#. How-
ever, if the density isrc2e, wheree can be taken infinitesi-
mally small, the probability drops to zero. Thus forM.2
DDOF’s ~where the issue of intermediate cells becomes
portant!, the ‘‘critical’’ regions will remain bounded away
from criticality ~at infinitesimal cost in density, but substa
tial gain in yield! to avoid connecting unit-density domain

The final case we must consider is that of next nea
neighbor unit-density cells. That is, consider two unit-dens
cells that share a common corner, but are otherwise sepa
by cells at or near the critical density. At and above t
critical density, the probability of a path connecting the un
density cells through the intermediate critical cell is on
Above the critical density this follows from the fact tha
connected paths between adjacent sides of a cell are m
likely than crossings between opposite sides, because o
many finite paths connecting adjacent sides. The existenc
many finite paths also insures that for densities below c
cality, the probability that the corner connected unit-dens
cells are joined through the intermediate cell remains fin
Unlike the probability of a crossing between opposite sid
of a cell, which is strictly zero below the critical density, th
probability of a crossing between adjacent sides is nonz
for all r.0. For example, occupation of the single site at t
corner of the cell~which occurs with probabilityr! is suffi-
cient. In fact, numerically we find that the probability of
crossing between adjacent sides of a square cell mono
cally increases with density, and continuously approac
unity at r5rc . In particular, we find that whenr5rc2e,
the probability of a crossing between adjacent sides rem
essentially unity@12O(ex) from some 0,x,1#. Thus, cor-
ner connections are equivalent to nearest neighbor con
tions on the design lattice in the limit of largeN. In our finite
lattice simulations~for design lattices up to 333!, we ob-
8-8
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FIG. 7. Global optimization of the design lat
tice for M<5. Solutions are obtained by consid
ering all possible design lattice configuration
with r IJP$rc2e,1%. For M51 the optimal solu-
tion is the critical density. The top row illustrate
the optimal configurations forM52,...,5 ~black
corresponds to a density approachingrc , and
white corresponds to unit density!, and the bot-
tom row illustrates the macroscopic portion of th
corresponding event size distributions for ea
case.
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serve that corner connections are always excluded in opt
solutions, forP(I ,J) sufficiently smooth@24#. For example,
with M52 and a uniform distribution of hits, the optima
solution has only one unit-density cell~rather than two that
are diagonally connected! as illustrated in Fig. 6~d!. See Ap-
pendix A for a further discussion of corner connectivity.

When we assume an infinite underlying lattice, we are
a priori restricted to considering site percolation on the tw
dimensional square lattice as the underlying statist
model. Site percolation on the two-dimensional square lat
fixes the value ofrc at 0.592. While the particular layout o
optimal solutions does depend onrc , our qualitative results
are independent of the specific value. For consistency
retain this choice. The disadvantage is that site percola
on the two-dimensional square lattice has not been so
rigorously. If we had chosen an underlying model for whi
percolation results were mathematically rigorous, many
our results for adding DDOF’s would be mathematically p
cise as well.

In the limit N→`, we use the following results from
percolation theory and the previous subsection to calcu
both the yield and the event size distributions.

1. Propagation

~1! Cells atrc2e experience no macroscopic loss in de
sity in a fire, and fires do not propagate macroscopic d
tances across the cell.

~2! Fires do not propagate from left to right or from top
bottom across cells at densityrc2e. Therc2e cells thus act
effectively as fire breaks for vertical and horizontal propa
tion.

~3! Fires will propagate between adjacent edges of c
with densityrc2e ~see Appendix A!. This implies a corner
connection between cells at unity density is effectively
same as a shared edge.

~4! Cells at unit density experience total loss when a sp
hits the cell, or when fires propagate into the cell from ne
est ~edge connected! or next nearest~corner connected!
neighbor cells at unit density.

2. Event sizes

~5! The cluster size distribution in cells at densityrc2e is
identical to that of site percolation in the neighborhood of
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critical density. Each cell at densityrc2e contributes cumu-
lative weight to the event size distribution given by the to
probability P(I ,J) @Eq. ~4!# of hitting within the cell. With
probability (12rc)P(I ,J)1O(e) it hit a vacant site within
the cell, and with probabilityrcP(I ,J)1O(e) an occupied
site is hit. The critical events span a range of sizes wh
scales asF( l ); l 2a with a;0.05, but which all scale to zero
loss in the limitN→` @see item~7!#.

~6! The cluster size distribution associated with cells
unit density is determined by their connectivity, each w
statistical weight determined by the cumulative hit probab
ity summed over the area of connected regions~as defined
above!.

~7! The overall event size distribution thus has two co
tributions: one from cells at density approachingrc and the
other from cells at unit density. These scale differently in t
limit N→`. Specifically, the events in therc2e regions are
infinitesimal, with the largest events scaling asNdf , with df
5 91

48 , compared to the density, which scales asN2, and dis-
tributed according to a power lawF(; l ); l 2a, where a
'0.05. The events associated with the unit-density cells c
sist of a discrete set of sizes, with macroscopic loss.

Next we compute the globally optimal configuration b
explicitly considering all of the 2M

2
possible configurations

and picking the one with highest yield. Because the num
of configurations increases extremely rapidly withM, this
brute force global optimization rapidly slows down and b
comes computationally intractable forM.5.

Our results forM<5 are illustrated in Fig. 7 for a fixed
distribution of sparksP(x,y) @Eq. ~2!#. Black signifies den-
sity rc2e in the design lattice, and white signifies density
With M51 ~not shown! criticality is the optimal solution,
and the event size distribution is that of criticality. ForM
52 we recover the pattern of critical and unit-density ce
that the corresponding discrete lattice simulations was c
verging towards with increasingN @Fig. 6~a!#. Specifically,
the cell in the upper left corner is near the critical dens
while the remaining cells are at unit density. A single even
illustrated in the corresponding event size distribution—
large event that occurs if any of the sites within one of t
three unit-density cells is hit. Since the size of all of t
critical events in therc2e cell scale to zero asN→`, we
8-9
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cannot illustrate them on the same logarithmic graph.
As M increases, increasing resolution of the design g

results in increasingly refined patterns. The first aspec
this, which emerges forM53,4, is increased resolution o
the spark distributionP(x,y), through more refined place
ment of therc2e barriers. This placement is subject to
regularities imposed by the combination of the continuo
distribution of sparks and the finite design grid. For bo
M53,4 there is still a single region at unit density. Howev
it is clear from the comparison of the event sizes and pr
abilities for M52,3,4 that with increasingM the size of the
large event is staying roughly constant, while the probabi
of hitting the region is decreasing.

For larger M (M55), we begin to see multiple~here
three! unit-density regions, separated by barriers formed
nearest neighbor connected paths of design cells at de
rc2e. The width of the barriers corresponds to the width
a single design cell, and they are concentrated near the u
left-hand corner of the lattice that has the highest probab
of sparks. They are also concentrated towards the left edg
the lattice, more than the top edge, because the asymmet
the exponential distribution implies the probability of spar
falls off more rapidly along the horizontal axis, compared
the vertical axis. As a result, smaller events occur in regi
that are more likely to be sparked, while large events oc
in regions where sparks are rare. Although the data are
extremely sparse, the relative probabilities of fires in th
unit-density regions are consistent with power law statis
produced for much larger lattices~see Fig. 9!.

As M increases the patterns become increasingly remi
cent of the HOT configurations obtained previously throu
constrained optimization on finite lattices. In those stud
individual sites were chosen to be occupied or vacant,
connected barriers of vacant sites defined firebreaks sep
ing compact connected clusters of occupied sites. The di
ence here is that our finite lattice is the design lattice, wh
is superimposed on an infinite underlying lattice. Barrie
and occupied sites correspond to design cells at densitrc
2e and unity, respectively. There are a few technical diff
ences between our calculations here and the analogous
mizations on finite lattices: on the finite lattice fires do n
spread between next nearest neighbors~i.e., corner connec-
tions!, and calculations of the yield weight barrier sites
zero ~vacant! rather thanrc2e ~critical!. By taking these
differences into account, algorithms for global optimizati
of small lattices are easily modified for the small finite d
sign lattices superimposed on infinite underlying lattices c
sidered in this section. This suggests the next step in
numerical optimization, which is to modify our constraine
optimizations for finite lattices, to develop analogous co
strained optimizations for a finite design lattice superi
posed on an infinite underlying lattice.

D. Local optimization for an infinite underlying lattice and
many DDOF’s

In this section we generalize the local incremental al
rithm discussed in Sec. II and@10# for obtaining HOT states
on finite lattices to the case of a finite design lattice sup
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imposed on an infinite underlying lattice. Rules~1!–~7! de-
fined in Sec. III C for calculating yields and event size d
tributions continue to hold. The only difference is that he
we restrict the search space for optimal solutions. Thus
are not guaranteed or even likely to converge to the glob
optimal solution for a given value ofM. Nonetheless, as in
our previous analysis of finite lattices@9,10#, the general
properties of increasingly designed states are independe
the specific constrained optimization performed.

The algorithm is defined as follows: We begin with ea
cell at densityrc2e. We incrementally increase the densi
to unity by converting cells to unit density one at a time. T
choice of which cell to convert at each incremental step
determined by testing all possible remaining choices~i.e.,
cells that are still at densityrc2e! to determine which cell,
if converted, leads to the highest yield configuration on
lattice, given that one additional cell must be converted. T
best cell is then converted, and the procedure continues
the lattice is fully occupied. In the case of degeneracies~two
or more choices produce identical outcomes!, one of the
choices is selected at random.

For eachM, this procedure generates a discrete curve
yield vs density ~Fig. 8!, with density increments of (1
2rc)/M

2 as additional sites on the lattice are occupied. T
configuration associated with the maximum value ofY
~marked by the arrow in Fig. 8! is the optimal configuration
for the search. These are illustrated in Fig. 9 for increas
values ofM. The search is local in the sense that the co
figuration associated with each increment in density is ba
on the configuration at the previous increment. Compare
the brute force global optimization in the previous sectio

where all of the possible 2M
2

configurations are considere
as candidates for the optimal configuration, here we sea
over a restricted space of less thanM4 possibilities. This
allows us to consider much larger values ofM than are ac-
cessible in the brute force global optimization.

Here we see that for small values ofM (M51,2,3) the
results agree with results obtained by global optimization
Fig. 7. However, for more than two DDOF’s this need n
generally be the case. For example, for the case of th
DDOF’s, the local incremental algorithm will always conve
the cell that is least likely to be hit fromrc2e to unit density
first. However, for someP(x,y) the globally optimal solu-
tion will not have that site at unit density. Nonetheless,
qualitative features obtained from the local incremental al
rithm are similar to those obtained by global optimizatio
Here we again see that increasing values ofM lead to in-
creasingly refined patterns composed of compact conne
clusters at unit density, separated by barriers one design
wide at density nearrc . Furthermore, because we acce
larger values ofM, we begin to deduce the emergence
systematic trends associated with increasing design, w
we verify analytically for the case of a uniform distributio
of sparks in Sec. IV. These are deduced from Figs. 9 and
where Fig. 10 illustrates the peak values ofY obtained from
searches analogous to that illustrated in Fig. 8. We concl
this section with a summary of our observations.
8-10
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FIG. 8. Search for an optimal design config
ration for M564 using the local, incremental al
gorithm. Design cells are converted from dens
approachingrc to unit density one at a time, in a
manner that maximizesY at each increment. This
results in the dense trace of black* ’s ~which ap-
pear as a solid line for most of the curve! illus-
trated in the figure. The optimal design config
ration @Fig. 9~f!# corresponds to the maximumY
for this search.
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~1! IncreasingM leads to increasing densities and incre
ing yields. This is illustrated in Fig. 10, where we plot th
yield as a function of density for the locally optimized la
tices for successive numbers of DDOF’s. The one excep
to this trend in our numerical data is seen in comparingM
54 and M58, where the yield of theM54 solution is
slightly greater than forM58. This inversion does not dis
rupt the overall trend, and arises due to the finite size of
design lattice.

~2! IncreasingM typically leads to decreasing averag
loss. In Fig. 10 the loss is measured by the vertical drop
the optimal yield from the diagonal line~zero loss!. The
critical solution obtained forM51 has zero loss. Howeve
the higher-density configurations obtained forM.1 have
nonzero loss associated with the unit-density cells. Thi
apparent in our numerical results, which show a drop fr
the diagonal line forM52. AsM increases, the drop tends
decrease~even though the density is increasing, indicati
more converted regions!. As in item ~1! there are exception
due to finite design grid effects. Nevertheless, the ove
trend is illustrated by the fact that the slope of the cu
drawn through the optimal yield points is steeper than tha
the diagonal one.
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~3! There are several aspects of items~1! and~2! that are
also apparent from the event size distributions~Fig. 9!. The
increasing density with increasingM @item ~1!# implies that
in the event size distribution statistical weight from the m
croscopic critical portion of the distribution~not shown! is
shifted to the macroscopic portion, which we refer to as
HOT tail. This is apparent in comparing the cumulati
weight in the HOT tail@deduced from the value ofF( l )
associated with the left-most data point#, which increases
with M. Increasing DDOF’s also leads to increasingly refin
patterns, which adds breadth to tail in the event size dis
bution. Figure 9 illustrates the event size distribution of t
optimal configuration for different values ofM. The fact that
the average loss decreases with increasingM @item ~2!# is
another way of saying that the mean size in the event dis
bution decreases with increasingM.

~4! Finally, increasing density and spatial resolution of t
pattern, which is associated with higher yields for high
DDOF’s simultaneously introduces new sensitivities, refle
ing the robust yet fragile nature of designed systems. Hig
densities imply increased fragility to changes in the distrib
tion of sparks, and flaws in the design pattern, to which
critical configuration is entirely insensitive.
e
g

FIG. 9. Optimal configurations and event siz
distributions for the design lattice obtained usin
the local incremental algorithm forM52,4,8,16,
32,64 andP(x,y) from Eq. ~2!.
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IV. ANALYTICAL RESULTS FOR A UNIFORM
DISTRIBUTION OF SPARKS

The symmetries associated with a uniform distribution
sparks make optimization of the yield in the percolation f
est fire model withM2 DDOF’s more tractable analytically
As in the previous section, we focus on the case of an infi
underlying lattice. In this limit, the optimal design cell de
sities are either approachingrc or at unit density, and rules
~1!–~7! of Sec. III B can be used to determine the propa
tion properties between cells and the event size distributio

Optimal solutions typically consist of compact un
density regions of equal size, surrounded by near crit
barriers. Unit-density regions will tend to be of equal siz
because for uniform sparks, the area of a unit-density reg
defines both the hit probability of the region and the loss
one unit-density region is larger than another, then the la
cell will both be more likely to be hit, and will also suffer
greater loss, causing an increase in the average loss rel
to that which would be obtained if the regions were of eq
size. The unit density regions will tend to be square, s
rounded by critical barriers one design cell in width in ord
to maximize density. Such a configuration minimizes t
number of critical density cells required to isolate the regi

Deviations from this typical layout are associated w
packing constraints that are encountered in fitting
optimal-size unit-density regions into a design lattice of
nite M. This results in some spread in the size distribution
the regions to accommodate the edges, which is of neglig
importance asM→`. When the finite size of the design gri
is not incompatible with the optimal region size, all regio
are square and of equal size even for finiteM.

For a uniform distribution of sparks, the microscopic cri

FIG. 10. Yield vs density for the optimal configurations on t
design lattice obtained using the local incremental algorithm
M51,2,4,8,16,32,64 andP(x,y) from Eq. ~2!. For eachM the
maximum is obtained from a run in which the density is increm
tally increased as in Fig. 8. Here for clarity, for all butM51, we
omit the full scan over densities, and retain only the peak valu
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cal events still exhibit power laws. However, we no long
obtain power law distributions for the macroscopic even
since they are all of equal size. Fully designed HOT config
rations on finite lattices do not exhibit power laws for un
form distributions of sparks either. In that case, the cells
also square and of equal size, though the optimal barriers
diagonal relative to the underlying lattice, which minimiz
the number of vacancies~since fires do not propagate be
tween corner connected sites on the underlying lattice!.

The calculations in this section provide a quantitativ
analytical illustration of the features associated with add
DDOF’s that emerged as numerical trends in the previ
section. Namely, increasing DDOF’s leads to increasing d
sities, decreasing losses, increasing yields, and a shift in
tistical weight in the event size distribution from critica
events towards the HOT tail~now a family of events, all of
equal size!. We begin by considering smallM, where just a
few DDOF’s produce macroscopic increases in yield. This
followed by asymptotic analysis of the largeM limit, where
we show yield approaches unity, and determine the cha
teristic event size of the unit-density regions.

A. Exact solutions for small numbers of DDOF’s

WhenM is sufficiently small it is possible to exactly ca
culate the optimal configuration by explicitly considerin
relatively few choices. The uniform distribution of spark
simplifies the problem by introducing many degeneracies
the yield for different spatial patterns of the cell densities

The yield can be written as

Y5
1

M2 S (
$I ,J%

r IJ2(Rk

P~Rk!A~Rk! D . ~8!

The first term on the left-hand side is the total density, w
ten as a sum over the densities of the design cells$I, J%, and
the second term is the average loss. The loss comes
each of the unit-density design cells, which form a set
connected regions$Rk% ~the edge and corner connected clu
ters! on the design lattice. HereP(Rk) is the probability of
hitting regionRk , andA(Rk) is the corresponding area~i.e.,
the number of design cells in regionRk!.
We obtain the following results for smallM:

M51. As previously stated, the optimal solution for
single design cell corresponds to the critical density.

M52. For a 232 design grid, we consider the yield
associated with zero to four design cells set to unit dens
with the remaining cells at the critical density. Since ed
and corner connections of unit-density cells on the des
lattice are equivalent, there is no distinction between diff
ent arrangements of unit-density cells once the numbe
fixed. LettingYs denote the yield fors design cells at unit
density, by explicit calculation we obtain isY050.592,Y1
50.632, Y250.546, Y350.336, andY450.0. Thus forM
52 the optimal solution corresponds to one design cel
unit density, and the three remaining cells at densityrc . This
is exactly what we found numerically on finite lattices@Fig.
6~d!#.

r

-
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TABLE I. Analytical results for the optimal yield, density, and average loss for a uniform distributio
sparks, withN→` andM3M design lattice, with unit-density regions of sizem.

M m Yield Density Loss

1 0 0.592 0.592 0
2 1 0.632 0.694 0.062
3 1 0.724 0.773 0.049

largeM (12rc)
1/3M2/3 123(12rc)

2/3M 22/3 122(12rc)
2/3M 22/3 (12rc)

2/3M 22/3

M→` `, but m/M→0 1 1 0
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M53. For a 333 design grid a larger number of cand
date configurations must be taken into account. Degenera
introduced by the uniform distribution of sparks again si
plifies the search considerably, so that we need only cons
13 distinct configurations. After some algebra, the optim
solution is found to correspond to unit-density regions
each of the four corner design cells, with the remaining fi
cells forming a plus sign at density approachingrc . The
yield in this configuration isY50.724.

Determining optimal solutions for larger values ofM be-
comes increasingly tedious. However, evenM<3 suggests a
trend that we expect to continue for largeM. Namely, the
optimal state of the design lattice breaks up into unit-den
regions~in these cases corresponding to a single design c!
surrounded by critical barriers one design cell wide. For
creasingM, we obtain increasing densities, increasing yiel
and decreasing average losses. These results are summ
in Table I. As for nonuniformP(x,y), we again find that
very few DDOF’s produce macroscopic increases in yield

For small M design lattices, the critical density barrie
occupy a larger portion of the lattice than the unit-dens
regions, even though they are a single design cell w
However, asM increases, the design cell size decreases,
the critical barriers shrink in width, occupying less and le
area. Eventually the optimal number of design cells in e
unit-density region becomes greater than one, and will c
tinue to increase with increasingM. Since the barriers are
single design cell wide, asM→` it is possible to have an
infinite number of barriers, which nonetheless occupy a v
ishing fraction of the lattice, leading to the asymptotic resu
of unit yield and density in the limitM→`, discussed in the
next section.

B. Asymptotic solution for many DDOF’s

When the number of DDOF’s is large, the optimal so
tion for a uniform distribution of sparks divides theM3M
design lattice intom3m square unit-density regions of equ
size, divided by critical boundaries of densityrc2e. The
objective of this section is to calculate the optimal sizem of
the unit-density regions for fixedM, in the limit M→`.
Asymptotically, we can ignore corrections associated w
packing the optimal size regions onto a finite design g
These terms correspond to small adjustments ofm away
from the optimal value that does not alter the scaling.

The solution is represented schematically in Fig. 11. T
M3M design grid is broken up into (m11)3(m11) regu-
lar repeat units. Each of these consists of a square u
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density region ofm2 design cells, and linear perimeter o
(2m11) cells at densityrc2e. Neglecting terms ofO(e)
the yield that corresponds to this configuration is given b

Y5
m2

~m11!2 1
2m11

~m11!2 rc2
m4

M2~m11!2 . ~9!

The first two terms on the left-hand side correspond to
density of ther51, andrc2e cells, respectively. The las
term is the average loss associated with the unit-density
gions.

It is a straightforward exercise to optimizem for fixed M.
We obtain

m'~12rc!
1/3M2/3. ~10!

The key steps are outlined in Appendix B. From this soluti
we can obtain asymptotic results for yieldY,

Y'123~12rc!
2/3M 22/3, ~11!

the density

r'122~12rc!
2/3M 22/3, ~12!

FIG. 11. Schematic diagram of the optimal layout for a unifo
distribution of sparks.
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and the average loss

^ l &ave'~12rc!
2/3M 22/3, ~13!

which are included in Table I. Numerical results plotting t
yield as a function of density appear in Fig. 12~a! for large
values ofM.

For finite M, corrections associated with possible misfi
of the optimalm3m squares on the finite design grid can
calculated, and leads to some rectangular regions when
fit is not perfect. A perfect fit occurs whenM, or M21 is an
integer multiple of the optimal (m11). HereM21 corre-
spond to cases where them3m squares fit perfectly, but the
last critical barrier is removed from the boundary row. Ho
ever, asM→` corrections are negligible, and do not chan
the leading asymptotic results given above.

As with smallM these results illustrate the general tren
associated with increasing DDOF’s, which are consist
with the numerical results of the previous section. Name
increasing DDOF’s lead to increasing densities and yie
and decreasing losses. Results for smallM51, 2, 3 ~first
three diamonds, in order of increasingY! and largeM ~in-
creasingM corresponds to increasingY! are depicted graphi
cally in Fig. 12. AsM→` the yield approaches the max
mum value of unity. The fact that the slope ofY vs. r in Fig.
12 is steeper than the diagonal defined byY5r illustrates
that the average loss decreases with increasingr.

Similar to our numerical results for nonuniformP(x,y),
the distribution of events breaks up into microscopic criti
events associated withrc2e barriers and events involving
macroscopic losses associated with the unit-density regi
In this case the critical events have the same power
statistics. Increasing DDOF’s again results in increas
weight associated with the unit-density regions in the ove
distribution of events. However, for a uniform distribution
sparks the statistics of the ‘‘HOT tail’’ are not described by
power law, and instead correspond to a single size, o
some cases a few sizes when packing corrections are t
into account. The characteristic size of unit-density regio
decreases with increasingM and becomes microscopic in th
limit M→`. However, because they correspond to a dive
ing number of unit-density design cells, they are still in

FIG. 12. Figure~a! illustrates yield vs density for the optima
configurations on the design lattice obtained using the unifo
P(x,y) solution forM51, 2, 3 and 15<M<1000, while~b! illus-
trates the yield as the number of DDOF’s are increased. Here
plot the leading asymptotic results, and neglect small correct
due to fitting.
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nitely large relative to the largest~fractal! events in the criti-
cal regions, which lie within the barrier network.

V. CONCLUSION

At a time when the study of complex system plays
increasing role in science, particularly in interdisciplina
endeavors, developing a more quantitative measure of s
general concepts as complexity and design is important
cause it leads to a more precise and common vocabulary
can be applied to different systems. The scientific field
complex systems aims to link simple models and gene
principles that arise in physics, mathematics, and enginee
to a wide range of real and genuinely complicated appli
tions that span many disciplines. In order to strengthen th
links it is useful to examine how the amount of design
cluded in simple models may affect the nature of the co
plexity that is observed. In simple models basic concepts
be investigated in detail, albeit in an abstract context. Wh
it is difficult if not impossible to imagine quantifying pre
cisely the amount of design in everyday complex syste
such as ecosystems or the Internet, it is a common engin
ing and policy task to evaluate how tradeoffs associated w
alterations in design and added complexity may change
performance of a system for both better and worse.

Here we introduced a method for incrementing the nu
ber of tunable design degrees of freedom in percolation
est fire models. This allows us to interpolate between l
and high design limits, corresponding to critical and HO
states, respectively. The intermediate design states do
represent a smooth transition in the underlying configurat
of the lattice, but rather a shift in the statistical weight as
ciated with near critical regions towards unit-density regio
that form HOT lattice configurations. The contrasting ch
acteristics of criticality and HOT are listed in Table II.

Construction of a design lattice of cells superimposed
an underlying lattice simplifies our analysis, given that p
colation isa priori a lattice problem. Our method is reminis
cent of an inverted real space renormalization, but serve
highlight the fact that highly designed lattices would not
renormalizable in the traditional sense. Rescaling the den
of a configuration, without specifically taking into accou

e
s

TABLE II. Contrasting properties of criticality/SOC vs HOT.

Characteristic Criticality and SOC HOT

Density Low High
Internal Generic, Highly

configuration random structured
Loss Infinitesimal Macroscopic
Events Fractal Compact
Statistics Power laws Power laws
Origin

of
power laws

Internal
fluctuations,
criticality

Optimization
in a variable
environment

Robustness Generic Robust, yet fragile
Increased

resolution
Does not

matter
New structure,

and sensitivities
8-14
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the barriers, would wash out the key features responsible
robustness.

One might argue that our definition of DDOF’s in term
of a design lattice has biased our results towards solut
that exhibit separate HOT and critical features segrega
into different regions in space. This is certainly a reasona
concern, and worthy of further investigation. Our constru
tion is artificial, and presumes the ability to define sha
boundaries between regions of different density. Howe
we expect similar results would hold even if the borde
between design cells were more diffuse. The fact thatrc
2e corresponds to the highest density at which there is z
loss and zero connectivity suggests that criticality may pla
special role in the initial formation of barriers in any impl
mentation of increasing DDOF’s. Our design latticea priori
restricts the near critical barriers to specific design cells.
alternative scheme might expand the densityr(x,y) as a
polynomial in x and y, with additional DDOF’s associate
with added terms in the expansion. For a single DDOF, o
the density is tuned, again resulting in criticality. The ne
step would be associated with introducing a gradient. Wh
such an expansion forces a smooth variation in the densi
is the spatial placement of the critical density that plays
central role in determining the solution, and serves a
boundary between a lower-density region in which there
no net loss, and a high-density region in which loss is m
roscopic. For large numbers of DDOF’s in this scheme, cr
cal barriers could be resolved with increasing sharpness
spatial placement, just as in our design lattice.

In terms of yield, the specific value of the density in t
barrier regions becomes less and less important with incr
ing DDOF’s, and of vanishing importance in the limit o
infinite DDOF’s. The key function of barriers is to isola
unit-density regions. For large DDOF’s, the contribution
density from the increasingly narrow barriers becomes n
ligible, so that the barriers could be any density, even zero
long as their density is belowrc . Because fluctuations in th
barrier density aroundrc can induce connectivity, finite lat
tice simulations exhibit barrier densities that are sufficien
below rc to make connections extremely rare. Thus the r
of criticality may be an artifice of taking small DDOF’s
combined with a thermodynamic limit on the underlying la
tice. When we take the thermodynamic limit of the under
ing lattice, the function describing connectivity becom
completely deterministic, except atrc , where the probability
of connection between opposite sides of a barrier depend
the shape of the barrier, and lies somewhere between
and unity @20,21#. The fact that our barriers are tuned toe
below the critical density is a testament to the fact that
are optimizing for yield, with no risk of fluctuations, whic
results in barriers tuned to the maximum density to prev
connectivity. Clearly, were we to introduce the possibility
density fluctuations and other stochastic effects, these
figurations would be highly sensitive, and a more conser
tive barrier density and barrier width that is more robust
fluctuations would win out.

Additional methods for increasing the number of DDOF
may be motivated by specific applications, and could invo
additional mechanisms for the spread of cascading fai
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beyond the nearest neighbor connectivity represented in
colation. However, it is our belief that most natural and ma
made complex systems lie near the high design limit
scribed by HOT.

High-yield lattices correspond to an extremely small su
set of all possible configurations, for which most single-s
perturbations are neutral in terms of yield. While the tem
tation is to say that these high-yield lattices are robustly h
yield, the correct statement is that they are extremelyrobust,
yet fragile, because of their extreme sensitivity to a few ra
events.
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APPENDIX A: CORNER CONNECTIVITY

In this appendix we describe why a corner connect
between next nearest neighbor unit-density cells ma
propagation of fires between the unit-density cells su
ciently likely that such configurations can be consider
equivalent to a shared edge. The net effect is to preven
agonal barriers on the design lattice that are commonly
served when the configuration is optimized on the underly
lattice. This distinction is readily seen by comparing t
HOT configuration obtained using the local incremental
gorithm in Fig. 1~b! with the corresponding result for th
local incremental algorithm applied to the design lattice
Fig. 9~f!, which has only vertical and horizontal barriers. T
results in this appendix fall short of a rigorous proof, bu
combination of numerical and analytical results strongly s
gest that when the density in the intermediate cell isrc2e,
the chances of a crossing between adjacent edges in the
is 12O(ex), where 0,x,1. Thus ase approaches zero
fires will spread almost surely between corner connec
unit-density cells as we assume in Sec. III C, propagat
rules ~3!–~4!.

Figure 13 illustrates two examples of corner connectio
on the design lattice. Figure 13~a! represents the case fo
M52, while Fig. 13~b! represents the case for some mu
larger value ofM. In the latter case, the individual desig

FIG. 13. Corner connectivity. Figures~a! and~b! illustrate unit-
density regions that are corner connected~next nearest neighbors!.
While M52 in ~a!, M is essentially arbitrary in~b!. It is presumed
in the text that both are subject to a uniformP(I ,J) and that the
unit-density cells are macroscopic.
8-15
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cells are not drawn, and therc2e barriers correspond to
vertically and horizontally connected lines of cells, one d
sign cell wide. The case of relatively large unit-density
gions, compared to narrowrc2e barriers corresponds t
large values ofM, where the cost in density of adding a fe
morerc2e cells to prevent a corner connection is negligib
small. However, even in the case of smallM we see corner
connections prohibited numerically@see, e.g., Fig. 6~c!,
where corner connections are excluded for uniform hits#.

In both the small and largeM cases shown in Fig. 13, th
two white unit-density regions share a common corner.
spark strikes one of the unit-density regions, what is
probability the fire spreads through the intermediate reg
to the other unit-density cell? If the intermediate cell has u
density, the corner connected cells area priori part of the
same connected cluster. If the cell has densityrc or rc2e we
have to do a little more work to show that this is still almo
surely the case.

The probability of crossing between adjacent sides of
cell at densities near criticality is well studied@20–22#. In
particular, an exact formula for crossing probability betwe
segments of the boundary of a simply connected comp
region was originally derived in Ref.@20# and is called
Cardy’s formula. It follows from this that if the intermediat
cell has densityrc or greater, the crossing probability
unity, due to the existence of an infinite cluster. To prev
top to bottom crossing, the barrier cells must be at or be
densityr5rc2e.

To determine the general behavior of this diagonal cro
ing probability Pdc for arbitrary densities, we consider a fi
nite underlyingN3N lattice, in the limit of largeN. In the
absence of an infinite cluster (r,rc), the relevant terms
come from paths of finite length. Unlike crossings betwe
opposite sides, there are many finite paths connecting a
cent sides. For example, the shortest path involves the si
corner-most site, which is occupied with probabilityr. Thus
Pdc.r, ;r. The next shortest path involves the three oc
pied sites that connects the adjacent sides but leaves the
ner site unoccupied. Including the shortest and second sh
est path gives us a lower boundPdc.r1r3(12r). While
this process is far from elegant, it can be extended for
arbitrary number of finite paths to obtain a lower bound
high accuracy. We find that the bound is a continuous fu
tion of r, increasing monotonically approachingrc . As N
increases, we find thatPdc(rc) approaches unity~in agree-
ment with Cardy’s formula!, and obtain a family of curves
that converge towards the limiting form illustrated in Fig. 1
By inspection, asr5rc2e, approachesrc from the left,Pdc
approaches unity. However, it loses analyticity atr5rc ~as
is standard for order parameters!. By inspection, atr5rc
2e, Pdc512Aex to leading order whereA is some constan
and 0,x,1.

Finally, we note that decreasing the density in the bar
cells further~which decreases the probability of a diagon
connection! is not favored in calculations that optimize yiel
Instead, higher yields are obtained when the barriers ar
densityrc2e, and corner connections are treated as equ
lent to edge connections. The worst case scenario is for s
M, because the cost in density of additional barrier cells
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much greater than for largeM.
In fact, for the caseM52, depicted in Fig. 13~a!, any

density in the intermediate cells leads to a yield that is be
the yield obtained when all cells are at the critical density.
see this, let the total probability that the unit cells are co
nected be denoted byp. From the previous arguments,p
52Pdc2Pdc

2 andp→12A2e2x asr→rc2e. In the case of
a uniformP(I ,J), we obtain the following expression for th
yield Y ~assuming the intermediate cells are at densityr
,rc!:

Y5 1
8 ~12p!21 1

4 1 1
2 r. ~14!

But we know that 12p,12r, which implies the following:

Y,Y15 1
8 ~12r!21 1

4 1 1
2 r. ~15!

From this estimate, we note thatdY1 /dr.0 on the interval
of interest 0,r,rc . Thus, from this we find thatY1
,Y1 max5Y1(r5rc)'0.5668. However, sinceY,Y1 ,Y
,Y1 max'0.5668,rc . Therefore, the yield for the configu
ration in Fig. 13~a! is less than the critical density. Thus, su
a configuration is not even a candidate optimal configurati

For largeM @Fig. 13~b!#, suppose that the connected clu
tersR1 andR2 are composed ofl 1 and l 2 unit design cells,
respectively. Without loss of generality, let us assume t
l 1> l 2 . Consider the contributions to the yield that arise d
to the presence of a corner connection between regionsR1
and R2 , and denote it byYcc ~cc5corner connected!. We
want to then compareYcc to the yieldYncc ~ncc5no corner
connection! obtained if we change a single unit-density c
in the corner ofR1 , to prevent a corner connection. All w
then need to do is show thatYncc2Ycc.0. ForYcc we obtain

FIG. 14. The probability for crossing between adjacent sides
a function of the densityPdc(r) is similar to that ofP` in that it
behaves like an order parameter. Whenr5rc2e, the diagonal
crossing probability has the leading order formPdc512Aex.
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Ycc5
1

M2 S l 11 l 21
2l 1l 2

M2 ~12p!22
~ l 11 l 2!2

M2 D , ~16!

while for Yncc we obtain

Yncc5
1

M2 S l 11 l 22~12rc!2
~ l 121!21 l 2

2

M2 D . ~17!

Thus combining Eqs.~16! and ~17! we obtain

Yncc2Ycc5
1

M2 S 2~12rc!1
2l 1l 2

M2 @12~12p!2#

2
2l 121

M2 D . ~18!

In the largeM limit ~see Sec. IV B! l 1 ,l 2;M4/3. Conse-
quently, Yncc2Ycc.0 since l 1l 2 /M2;M2/3 and clearly
dominates Eq.~18!. In this case as well, we observe th
configurations with corner connections do not produce
highest yields and thus are not optimal configurations.

APPENDIX B: ASYMPTOTIC CALCULATION OF THE
OPTIMAL REGION SIZE FOR A UNIFORM

DISTRIBUTION OF SPARKS

In this appendix we sketch the key algebraic steps in
calculation of the optimal sizem2 of the unit-density regions
for M2 DDOF’s. In particular, we optimize Eq.~9! as a func-
tion of m with fixed M, to obtain the optimalm in Eq. ~10! to
leading order inM, asM→`.

Let g5m/M . In the limit M→`, g approaches a con
tinuous variable, reflecting the fact that the problem of pa
ing the optimal regions into the design lattice, which co
strains our solution for finiteM, becomes a negligible
problem in the asymptotic limit.

Rewriting Eq.~9! in terms ofg, we obtain

Y5
g2

S g1
1

M D 2 1

2g1
1

M

M S g1
1

M D 2 rc2
g4

S g1
1

M D 2 . ~19!
al
ey

lf-

01610
e

e

-
-

In the asymptotic limit, whereg is continuous, the optima
yield satisfies

dY

dg
50. ~20!

Equation~20! applied to Eq.~19! yields

m@m312m2M2~12rc!#50, ~21!

where the solutionm50 corresponds to a minimum yiel
~for M.0! at the critical density. In the limit of largeM, the
linear term inm in the parenthesis can be ignored, and
recover Eqs.~10!, from which it is straightforward to deduc
Eqs.~11!–~13!.

We can also obtain these results by using a scaling a
ment. Assuming

m5AMd ~22!

to lowest order inM 21, we obtain the yield

Y5122A21~12rc!M
2d2A2M2d22. ~23!

Assuming this scaling form holds asymptotically inM, we
seek a solution ford that sustains the maximumY for in-
creasing values ofM. Note that the exponentd enters the last
two terms on the left-hand side with opposite sign. The sc
ing of these two terms balances whend5 2

3 , which corre-
sponds to the optimal solution. To see this, considerd. 2

3 .
While the second term is relatively smaller, the exponen
the final term 2d22.2 2

3 is larger, leading to a more rapi
decay in yield. Similarly, ifd, 2

3 the second to last term
dominates, and produces smaller yields. Since the optimam
maximizes yield, we concluded5 2

3 . Additionally, we can fix
A by ]Y/]A50 and consequently recover Eqs.~10!–~13!.
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